Vor einigen Wochen hat der Programmierer von Pi-Star Andy Taylor MW0MWZ eine Änderung eingebaut, die vielen Usern nicht gefällt. Aufgrund einiger Anfragen an uns, wie man das ändern kann, hier mal die Erklärung.
Es gibt einige Varianten, bei denen man eigentlich Programmier-Kenntnisse braucht oder sich zumindest recht gut in der Verzeichnis Struktur von Pi-Star auskennen muss. Die einfachste Lösung nun hier:
Ihr ruft Pi-Star in der aktuellsten Version auf, klickt auf Configuration, geht dann in den Expert Modus. Hier ruft ihr unter den Tools das CCS Tool aus. Wer hier irgendwelche Farben verändert hat sollte jetzt einen Screenshot machen oder die Werte aufschreiben.
Der nächste Schritt ist ganz nach unten scrollen, hier findet ihr den Button Werkseinstellungen, bzw. Factory Reset. Diesen müsst ihr nun einmal drücken (hier werden nur die Einstellungen für das CCS Tool zurückgesetzt, eure anderen Einstellungen bleiben erhalten). Jetzt erscheint ganz unten eine neue Zeile mit der Bezeichnung „Lookup“. Im Moment steht hier RADIOID, das müsst ihr ändern in QRZ und abspeichern. Von jetzt an ist die Verknüpfung der Rufzeichen im Dashboard wieder zu qrz.com. Viel Erfolg beim Ändern.
Um beim IPSC2 in DMR mit mehreren Hotspots im gleichen Master einzuloggen, benötigt man eine zweistellige Erweiterung (Extension) eurer DMR ID, also z.B. 01, 02, usw.
Auf einem XLX-Server führt das jedoch dazu, dass ihr nicht übertragen werdet!! Also bitte nur eure 7-stellige DMR ID eintragen ohne Erweiterung.
Bei dem Gerät, das ihr zum Senden verwendet, bitte keinen Anhang wie /m, /p oder /name eingeben. Auch das wird in einem XLX-Raum nicht übertragen!
Das betrifft natürlich nicht nur unseren XLX421, sondern auch andere Brücken-Räume und jeden anderen XLX ebenfalls.
Ihr wollt auch ohne Funkgerät digital qrv werden? In diesem Beitrag erklären wir euch wie es funktioniert.
Advanced Multi-Band Excitation (AMBE™) ist ein proprietärer und durch Patente geschützter Sprachcodec und eingetragenes Warenzeichen von Digital Voice Systems, Inc. für sehr niedrige Bitratenbereiche von 2,0 bis 9,6 kbit/s.
So die Information bei Wikipedia. Für uns ist natürlich die Praxis das Wissenswerte. Das die Dinger von Amateurfunk Protokollen bis zu Satellitentelefonen Verwendung finden ist auch noch gut zu wissen. Aber nun zu einem praktischen Beispiel.
Schnell ein AMBE-Stick beim Händler eures Vertrauens (z.B. Wimo) bestellt und schon kann es losgehen. Betreiben kann man ihn in 2 Varianten:
Direkt am PC (Notebook)
Als separaten Server
Wir schauen uns erst einmal die 1te Variante an.
Als erstes benötigt ihr das Programm BlueDV für Windows, welches ihr unter http://www.pa7lim.nl/bluedv-windows/ findet. Im Text dann auf Software klicken.
Zu den Einstellungen im Setup (findet ihr im Punkt Menü):
Serial muss auf OFF stehen
Your Call ist klar – da muss euer Rufzeichen eingetragen werden (ohne irgendwelche Anhänge)
RX/TX Colors und Invert RXTX screen anklicken, so verändert sich die Farbe im Empfang zu Grün und bei senden zu Rot
Frequency muss eingetragen sein, auch wenn sie gar nicht benutzt wird, sonst speichert das Programm nicht
Bei D-Star das gewünschte Modul eintragen
DMR: Die ID eintragen (wird auch benötigt wenn ihr nur D-STAR macht) DMR type auswählen, also ob BrandMeister, DMR+ oder XLX Reflektoren gewünscht sind und einen passenden Master einstellen
Fusion: Bei den Einstellungen für Fusion zunächst das Netz auswählen, also FCS oder YSF und die gewünschten Start Räume festlegen
Jetzt kommen die eigentlichen Einstellungen für den AMBE™-Stick:
Use AMBE anklicken – Model AMBE3003 – Serial Port wie vorgegeben – DMR ID eintragen – BaudRate 460800
Was jetzt kommt betrifft nur diejenigen, die nicht direkt mit dem Stick am PC arbeiten wollen, also wenn ihr einen externen AMBE-Server verwendet (Variante 2).
USE AMBEServer anklicken – Die IP Nummer (im Netzwerk) auf der sich das AMBEServer Programm befindet. Die Port Nummer, die ihr später noch im Router als UDP Port freigeben müsst
Jetzt seid ihr im Setup-Menü und ihr könnt mit „Save“ bestätigen.
Weiter geht es mit den sehr wichtigen Feineinstellungen.
Ihr klickt auf die Registerkarte AMBE und hier sind die Einstellungen für den Lautsprecher und vor allen Mike Gain. Beim ersten PTT drücken war das nicht anzuhören, so laut war das. Hier die Bitte, nehmt einen Parrot – Echoraum um das zu testen.
Meine Erklärung bezieht sich auf die Windows Variante. Wer stattdessen mit seinem Android Smartphone qrv werden möchte, lädt sich im Google PlayStore das Programm BlueDV und richtet es entsprechend ein.
Gastbeitrag von Jörg DO3YKT, geschrieben von Holger DO5HOK
Moin aus dem Norden,
Nach 3 Hotspots, DV4Mini, Jumbospot und jetzt dem Dual Hat war ich schon am verzweifeln. Alle drei Hotspots waren im PI-Star Netzwerk zu Connecten und auch Empfangsseitig waren die Stationen über den eingestellten Reflektor zu hören doch man höre und staune mein Gerät ging einfach nicht auf Sendung zum Hotspot!!!
Zwecks Fehlerdiagnose habe ich alles mögliche ausprobiert wie z.B. verschiedene OM´s nach dem Problem befragt, Image neu geflasht, etc..
Durch das viele hin und her bin ich die Menüpunkte meines Handgerätes durchgegangen und habe einfach mal mein Gerät von Narrow in Wide umgestellt und das war die Lösung!
Also ab ins FT-70DE Menü, Punkt 61
suchen und einfach von Narrow in Wide umstellen
Siehe da, nach der Umstellung klappte es auf einmal und ich konnte mein erstes QSO über einen Hotspot führen!
73 de DO3YKT (Jörg)
Anmerkung DK5BS: Wir reden von Narrow und Wide — nicht von DN und VW… bitte nur DN verwenden, sonst wird das nicht in die anderen Netze übertragen. Und als MicGain Empfehlung Stufe 2.
Anmerkung von 9V1LH / DG1BGS: Alternativ kann man, für den Fall dass man einen openSPOT verwendet und lieber in der Narrow-Einstellung des FT-70D arbeiten möchte, diesen in den Modem-Einstellungen auch auf Half Deviation stellen.
Getestet mit FT-70D Firmware-Version C1.11 und openSPOT 1 Version 0141.
Das INRICO TM-7 verfügt über einen kräftigen Lautsprecher was gerade in lauten Umgebungen z.B. im Mobilbetrieb sehr von Vorteil sein kann. Leider verfügt es jedoch nicht über ein Lautstärke-Potentiometer, mit dem sich die Lautstärke dem eigenen Bedarf nach anpassen lässt. Die Lautstärke kann zwar in der Grundkonfiguration mit den Up- and Downtasten verstellt werden, in vielen Apps wie z.B. der EchoLink-App ist die niedrigste Einstellung im heimischen Shack jedoch immer noch zu laut. Das Verhalten der Lautstärkeeinstellung lässt sich mit einer Einstellung in der App jedoch optimieren.
Dazu drückt man in der geöffneten App zunächst rechts-oben auf die drei vertikalen Punkte und wählt Settings.
Nun scrollt man zu den SOUND-Einstellungen herunter und wählt Music statt Voice Call.
Das war es dann auch schon! Die Lautstärke lässt sich jetzt in geeigneteren Stufen regeln und es gibt auch keine Mindestlautstärke mehr.
Das Radioddity GD77 bietet, wenn es mit der OpenGD77-Firmware nach Roger Clark VK3KYY (https://www.rogerclark.net/), nicht zu vergessen die OMs des Programmierteams, geflasht worden ist, weitaus mehr als die Original GD77-Firmware. Unter anderem einen Hotspot Mode, zu dem hier einige Tipps gegeben werden.
Grundsätzlich werden benötigt (Alternativen gibt es auch, darauf gehen wir aber hier nicht ein):
Ein DMR-Funkgerät zum Einsprechen
Ein Radioditty GD77 als Hotspot
Das Programmierkabel zum GD77
Ein Windows-PC mit USB-Schnittstelle
Ein Internetzugang (DSL/LTE, je nachdem, was der Router hergibt)
Das Setup sieht wie folgt aus:
Die jeweils aktuelle OpenGD77-Firmware (OpenGD77.sgl) und den FirmwareLoader.exe sowie die aktuelle, dazu passende Programmiersoftware „OpenGD77CPSInstaller.exe“ (CPS, ohne die geht es nicht!) kann man unter folgenden Link im Bereich „Development updates“ herunterladen:
Der Installationsprozess ist einfach. Erst die CPS installieren, dann die Firmware auf das GD77 bringen. Installationsanleitungen sparen wir uns hier. Wir bitten euch hierzu im Internet zu recherchieren.
Achtung: Manche Virenscanner mögen den Treiber für die serielle Schnittstelle, der mit der CPS ausgeliefert wird, nicht. Die Installation erfolgt auf eigenes Risiko. Auch hierzu gibt es im OpenGD77-Forum genug zum Lesen.
Jetzt stellt man den VFO-Modus des GD77 an und wählt eine der in den Bandplänen ausgewiesenen Gatewayfrequenzen im 2m- oder 70cm-Band aus (Simplexbetrieb – Beide Frequenzen – RX/TX – sind gleich), je nachdem welche Möglichkeiten man mit dem erforderlichen zweiten Gerät, über das in den Hotspot eingesprochen wird, hat.
Manche PC mögen keine HF-Einstrahlungen in die USB-Schnittstelle. Das Programmierkabel ist ein entsprechendes Einfallstor. Hier empfehlen wir, sobald es zu Abbrüchen in der Audio beim Empfang kommt, Klappferrite direkt hinter den Steckern des Programmierkabels Geräteseitig und PC-seitig einzusetzen. Auch reicht i.d.R. eine Ausgangsleistung von 50 mW für den Hotspotbetrieb innerhalb einer Wohnung aus.
Als Betriebssoftware für die Überleitung der Datenströme vom Windows-PC zum Router gibt es aktuell zwei Stück zur Auswahl: MMDVMhost oder BlueDV
Bevor wir mit dem Konfigurieren von Handfunkgerät und Software beginnen, müssen wir diese erst einmal downloaden.
Den Download für die MMDVMhost Software findet ihr hier:
Variante 1 OpenGD77 mit MMVMhost: Der Download kommt als .zip Datei, diese bitte in einen Ordner deiner Wahl entpacken (bei mir heißt sie MMDVMhost) und anschließend eine Verknüpfung zu einem leicht zugänglichen Ordner z.B. auf dem Desktop erstellen!
Jetzt öffnen wir aus diesem Ordner die MMDVM.ini Datei und füllen die erforderlichen Dinge wie z.B. Callsign, ID, Frequenzen, ComPort, Zuordnungen der TS und des Startreflektors etc. aus. Speichern nicht vergessen!
Den ComPort erfahrt ihr durch Anschließen des Programmierkabels und Nachschauen im Gerätemanager eures PCs.
Das Kabel lassen wir am Handfunkgerät, schalten es ein und drücken den grünen Button am Handgerät suchen unter „Einstellungen“ den Punkt Hotspot und wählen mit den rechts/links Tasten MMDVM aus und bestätigen wieder mit der grünen Taste!
Nun starten wir die MMDVMhost.exe. Dann muss sich ein Fenster öffnen, dass ähnlich den nachfolgenden Bildern aussieht!
Diese Software ist die Schnittstelle zwischen PC und DMR-Master und braucht ein paar Sekunden, bis sie die Verbindung hergestellt hat. Jetzt müsste euer Gerät folgendes Anzeigen:
In meinem Fall bin ich nun mit dem Reflektor 4003 (Elbe/Weser) und der Talk Group 9 verbunden! Was wir jetzt noch benötigen ist ein 2. DMR Gerät mit dem wir auf derselben Frequenz wie dem auf Hotspotgerät angezeigt, jetzt funken können.
Variante 2 OpenGD77 mit Blue DV:
Auch hier kommt der Download als .zip Datei. Allerdings befindet sich nach dem Entpacken nur eine Datei im Verzeichnis, die installiert werden muss.
Nach der Installation befindet sich bei euch auf dem Desktop ein Icon mit dem BlueDV Symbol, bitte öffnet das Programm und sucht euch im Menü das Setup und füllt bitte wieder alles das aus, was für den Betrieb erforderlich ist, wie z.B. Call, ID, etc..
Bitte nach dem Ausfüllen das Speichern nicht vergessen!
Nun nehmt ihr euch für weitere Einstellungen die BlueDVconfig.ini vor, die sich hier befindet: C:\Users\…\Documents\BlueDV Auch hier bitte nochmal alles prüfen und fehlende Einträge ergänzen und speichern.
Jetzt verbinden wir das Programmierkabel mit dem Handfunkgerät, schalten es ein und drücken den grünen Button am Handgerät suchen die Einstellungen und wählen bei Hotspot mit den rechts/links Tasten BlueDV aus und bestätigen wieder mit der grünen Taste!
Nun die BlueDV Software starten. Nach meiner Konfiguration sieht der Bildschirm dann so aus:
und mein Hotspotgerät zeigt folgendes:
Jetzt benötigen wir wie in Variante 1 ein 2tes DMR Gerät mit dem wir auf derselben Frequenz wie dem auf Hotspotgerät angezeigt, funken können. Funktioniert natürlich im Moment nur auf DMR.
Die Umschaltung der TG erfolgt über das Gerät, mit dem in den Hotspot eingesprochen wird. Diese muss also entsprechend programmiert sein.
Für Verbesserungen, Ergänzungen und Anregungen sind wir dankbar. Nobody is perfect, HI
In diesem Beitrag beschreiben wir, wie sich das Radioddity GD-77 mit der OPENGD77 Firmware unter Pi-Star als Hotspot nutzen lässt.
So es ist da! Ein neues Spielzeug GD-77 von Radioddity (ja das schreibt sich wirklich so). Ausgepackt und in die Hand genommen hätte es auch ein Retevis RT-8 sein können. Größe und Gewicht sind etwa vergleichbar, das Display ist etwas kleiner. Auf jeden Fall wirkt die Haptik eines VHF/UHF Gerätes, das inklusive eines Handmikrofones gerade mal 92 € kostet, sehr gut. Der Drehknopf und die Tasten am Gerät wirken sehr stabil und die Verarbeitung ist für den Preis überraschend gut.
Der Hauptgrund warum ich mir dieses Gerät bestellt habe war natürlich, das auch ich davon gehört habe, wie einfach das GD-77 zum Hotspot umfunktioniert werden kann. Das wollte ich natürlich ausprobieren und man erhält nebenbei auch noch ein vollwertiges Duo-Band Handfunkgerät für DMR und FM.
Als erstes habe ich die neuste Programmiersoftware (CPS) von Roger Clark VK3YKK, dem Hauptverantwortlichen des Projektes OPENGD77, die heruntergeladen und installiert.
Bevor ihr jetzt „Flasht“ muss das Gerät mit dem beiliegenden USB-Kabel mit dem Computer verbunden werden. Die beiden unteren Tasten auf der linken Seite beim Einschalten gedrückt halten. Das Display bleibt aus, nur die LED oben leuchtet grün. Jetzt befindet sich das Gerät im Flash-Modus.
Um besagte OPENGD77-Firmware zu installieren hat die CPS unter dem Menüpunkt Extras einen Menüpunkt „Firmware loader“. Hier wählt ihr dann die neueste OpenGD77.sgl aus. Nach wenigen Sekunden ist schon alles fertig. Jetzt könnt ihr anfangen einen Codeplug zu schreiben oder einen fertigen einzuspielen.
Für unseren Versuch als Hotspot brauchen wir das allerdings nicht. Einfach das vorhandene USB-Kabel in einen Raspberry Pi stecken, auf dem Pi-Star installiert ist.
Jetzt beginnen die Einstellungen in Pi-Star selbst. Ihr ruft also Pi-Star wie gewohnt über den Browser auf und schaltet in der Konfiguration DMR als einzige Betriebsart ein. Ich gehe jetzt mal davon aus, dass die grundlegenden Basis Einstellungen bekannt sind und springe deswegen gleich zum Feld Radio/Modem Typ. In der aktuellen Version ist der gesuchte Modem Typ ganz unten zu finden und trägt die Bezeichnung OpenGD77 DMR hotspot (USB). Hier zwischendurch Speichern drücken.
Weiter geht es im Absatz DMR Konfiguration. Hier müsst ihr natürlich zuerst auswählen, ob ihr ein DMR Gateway, Brandmeister oder DMR+ machen wollt und stellt den entsprechenden Master, Startreflektor/TG usw. ein. Auch hier wieder Speichern drücken.
Zuletzt muss man im GD-77 noch den Menüpunkt Options – Hotspot auf MMDVM stellen und das Gerät neu starten. Von hier an lief der Hotspot ohne Probleme mit sehr niedriger BER. Übrigens funktioniert das ganze nicht im Terminal Mode sondern nur im Access Point Mode. Ihr braucht also auf jeden Fall ein weiteres Gerät um es anzusprechen – In die Hand nehmen und direkt funken funktioniert also nicht.
Die Leistung dieser Lösung ist übrigens vom Gerät her von 50 mW bis 5 Watt regelbar. Im Pi-Star noch feiner (RF-Level). Alle Betriebsarten von DMR aus über Cross-Mode sind natürlich ebenfalls möglich.
Das englische Handbuch und ein Bild mit den Tastenbelegungen zum geflashten Handfunkgerät findet ihr übrigens auch auf der Seite von Roger Clark.
Das D-STAR Protokoll bietet noch viel mehr als nur den reinen Sprechfunk: Parallel zur Sprache werden hier z.B. Informationen wie das eigene Rufzeichen und einem frei wählbaren Statustext übertragen. Mit der für Android und iOS erhältlichen ICOM App RS-MS1 lassen sich aber ebenfalls Bilder und Texte versenden und empfangen. Mehr dazu zu einem späteren Zeitpunkt in einem gesonderten Beitrag.
Wer damit einmal experimentieren möchte findet ab jetzt auf XLX421 Modul E Gleichgesinnte. In diesem Modul sind auch bereits weitere XLX-Server angebunden.
Um Betriebsarten wie zum Beispiel NXDN machen zu können und ohne dafür ein passendes Endgerät zu besitzen, hat Pi-Star eine tolle Funktion, die wir uns mal ein wenig näher anschauen wollen.
Zunächst gehen wir mal in den Konfigurationsmodus und schalten die Button DMR & DMR2NXDN ein. Das Ganze funktioniert auch von C4FM aus, dann müssen die Schieberegler für YSF und YSF2NXDN aktiviert werden.
Jetzt einmal auf Speichern klicken. Nach dem wieder hochfahren sollten zwei Felder da stehen. Zunächst die DMR Konfiguration, bei der als Master DMR2NXDN ausgewählt wird. Eure DMR-ID steht ja schon in der Basis Konfiguration.
Im zweiten Feld NXDN Konfiguration könnt ihr den Startreflector auswählen. Eine Liste zum Anschauen dieser Reflektoren findet ihr hier: http://www.pistar.uk/nxdn_reflectors.php
Um Pi-Star für P25 einzurichten müsst ihr entsprechend die Schieberegler für P25 auswählen und dann im Fenster Yaesu System Fusion Konfiguration folgende Einstellungen vornehmen.
Ganz wichtig: Beim Betrieb mit einem C4FM Gerät zunächst mit DN-Mode einmal die Betriebsart aktivieren. Für den Funkbetrieb dann VW als Mode einstellen, sonst wird euer Signal nicht übertragen! Und natürlich muss bei einem DMR Gerät eine Talkgroup und eine RX Group für den jeweiligen Reflector angelegt werden.
Ein kleiner Hinweis vorab: Bei diesem Artikel handelt es sich nicht um eine Schritt für Schritt Anleitung sondern vielmehr als Ideengeber für eigene Bastelprojekte.
Einleitung und Funktionsumfang
Ich bin durch ein YouTube Video von Jason, KM4ACK [2], auf ein interessantes Projekt aufmerksam geworden: Die Ham Clock. Sie ermöglicht auf einem Display die Darstellung von verschiedenen für den Kurzwellen- oder Satellitenfunk nützlichen Informationen, wie z.B.:
Weltkarte mit Tag-Nacht Grenze und aktueller Position der Sonne
Zusätzlich auf obiger Karte bei Bedarf:
NCDXF Baken mit Frequenz und Position
DX-Cluster Meldungen in Echtzeit
Satelliten Überflugbahnen in Echtzeit
Maidenhead Raster
VOACAP Ausbreitungsvorhersage vom eigenen Standort zum DX-Spot für jedes Band und unter der Annahme, das mit 100 W in CW gesendet wird
Aktuelle Wetterdaten am DX-Standort
Solarer Flux, Anzahl der Sonnenflecken, GOES 15 Xray Flux-Werte
Geomagnetischer Index
Solar Dynamics Observatory
Eigenes Rufzeichen mit aktueller Uhrzeit in UTC sowie das Datum
Stoppuhr
RSS Nachrichten-Stream von eHAM
Optional: Bei angeschlossenem BME280 Sensor lassen sich die aktuell gemessene Temperatur und ermittelte Luftfeuchte sowie die Werte der letzten 25 Stunden anzeigen
Diese Informationen werden aber nicht alle gleichzeitig dargestellt sondern der Nutzer konfiguriert den Inhalt des Bildschirms nach Belieben.
Hardware/Software
Die Ham Clock lässt sich auf unterschiedlicher Hardware betreiben wie z.B. einem ARDUINO mit Touchscreen, einem Raspberry Pi mit Touchscreen oder einfach einem PC mit angeschlossenem LCD-Display. Da ich kein Geld in die Umsetzung investieren wollte und bei mir in der Bastelkiste noch ein ungenutzter Raspberry Pi (ja, davon besitze ich tatsächlich sehr viele) mit originalem 7“-Touchscreen herumlag, habe ich mich für diese Variante entschieden. Konkret habe ich für meine Umsetzung die folgende Hardware verwendet:
Raspberry Pi B+ (prinzipiell alle Modelle möglich, solange der Verbinder für das Touch-Display kompatibel ist)
8 GB SD-Karte (2 GB ist aber auch vollkommen ausreichend falls zur Hand)
Raspberry 7“ Touchscreen
SmartPi Touch Case
BME280 Sensor, vorbestückt auf Platine
WLAN 802.11g USB-Stick
VK-172 GPS/GLONASS USB-Stick (nur zur einmaligen Positionsbestimmung oder z.B. als genauer Zeitgeber verwendet)
DC-DC Konverter HW-411
Inbetriebnahme
Als Ausgangsbasis habe ich das Raspbian Buster Lite Image verwendet. Nach dem Aktualisieren der Betriebssoftware und der Grundkonfiguration wie dem Ändern des Passwortes, des Hostnamens, der Zeitzone und der WLAN-Einrichtung habe ich mich nach der unter [1] veröffentlichen Anleitung um die Installation der eigentlichen Ham Clock gekümmert. Auf meinem System musste lediglich ein Paket nachinstalliert werden. Danach wird die Software für die Ham Clock heruntergeladen und auf dem System kompiliert.
Nun kann es auch schon losgehen: Neben Angaben wie dem eigenen Rufzeichen, dem Längen- und Breitengrad (kann auch automatisiert ermittelt werden, z.B. über einen angeschlossenen GPS-Empfänger oder über die Internet IP) und der gewünschten Einheit, kann bei Bedarf auch ein DX-Cluster Anbieter konfiguriert werden. Das sind dann aber auch schon alle zu tätigen Grundeinstellungen.
Anschließend gelangt man in das Hauptfenster, das man durch Antippen einzelner Fensterelemente nach seinem eigenen Gusto gestalten kann. Das ebenfalls unter [1] in englischer Sprache erhältliche Handbuch erklärt dazu ausführlich alle Einstellungsmöglichkeiten.
Wer zusätzlich einen BME280 Sensor verwenden möchte, muss zunächst noch in der Raspbian Konfiguration den I²C-Bus aktivieren und die i2c-tools installieren.
Probleme und mögliche Optimierungen
Ich habe die Konfiguration über eine angeschlossene USB-Tastatur und Maus vorgenommen, da sich im Konfigurationsmodus die unterste Tastenzeile mit dem Touchscreens nicht bedienen ließ. Ich habe daraufhin versucht, eine Kalibration des Touchscreens mit der Desktop-Variante von Raspbian durchzuführen, jedoch ohne Erfolg. Da dieses Problem ausschließlich im Konfigurationsmodus auftritt, habe ich mich nicht weiter mit der Problemlösung auseinander gesetzt.
Zudem war die Position meines BME280 Sensors ungünstig gewählt, da die angrenzende Elektronik, besonders aber der WLAN USB-Stick, sehr viel Abwärme produzieren und die Messwerte damit beeinflussen.
Leider konnte ich auch kein automatisiertes Backup von dem System im laufenden Betrieb erstellen, wie ich es sonst üblicherweise bei allen meinen Raspberry Pi’s mache, die 24/7 im Einsatz sind. Ich vermute aktuell, dass ein oder mehrere Prozesse in der Desktop-Variante das Backup ab einer bestimmten Stelle sprichwörtlich einschlafen lassen. Die Ham Clock Software ist es aber mit Sicherheit nicht. Diesem Problem werde ich mich zeitnah widmen, auch wenn ein Offline-Backup schnell erstellt war.
Die Software wird stetig erweitert und unter [1] ist bereits eine gut gefüllte Sammlung von Ideen für künftige Erweiterungen vorhanden.
Schlussbetrachtung
Die Ham Clock stellt ein sehr nützliches Accessoir für das eigene HAM-Shack dar, besonders für OM’s die DX-Spots auf Kurzwelle jagen oder Satellitenfunk betreiben. Besonders begeistern mich aber die Tatsachen, dass es sich zum einen um eine (kostenlose) OpenSource-Software handelt und zum anderen mit relativ einfachen Mitteln und, wie in meinem Fall, mit Komponenten realisieren ließ, die der bastelnde Funkamateur zum größten Teil herumliegen hat.
Das Projekt lässt sich in sehr kurzer Zeit umsetzen und ist für alle problemlos umsetzbar, die schon einmal mit einem Raspberry Pi zu tun hatten. Es kann aber auch als Einstieg dienen, um sich mit dem Raspberry Pi erstmalig zu beschäftigen.
Quellenangaben
Weitere Informationen zu dem Projekt findet ihr unter: