Kenwood – Neuer APRS D-Star Mobilfunktransceiver

Kenwood zeigt auf der Tokyo Ham-Fair 2024 erstmalig den langersehnten Nachfolger des TM-D710G.

Wie bereits im März diesen Jahres angekündigt, arbeitet Kenwood endlich am Nachfolger des zwar beliebten, aber in die Jahre gekommenen und auch nicht mehr erhältlichen Mobilfunktransceivers TM-D710G. Unsere Artikel dazu könnt ihr hier nachlesen.

Nun wurde er auf der diesjährigen Tokyo-Fair in Japan unter einer Vitrine vorgestellt. Es handelt sich tatsächlich um einen Dualband (144/430 MHz) Transceiver bzw. in der US-Version voraussichtlich um einen Tri-bander (144/220/430 MHz). Wie sein Vorgänger wird er APRS mit an Bord haben, aber eben auch D-Star.

Wie beim TM-D710G bilden das Bedienteil und das Grundgerät keine Einheit. Das Bedienteil ist etwa 18,5 cm breit, 10 cm hoch und verfügt über ein großes Display mit einem hintergrundbeleuchtetem Drehgeber links unten. Weiterhin gibt es sowohl links, rechts als auch unten vom Display Tasten, deren aktuelle Funktionen wie gewohnt am Displayrand angezeigt werden. Weiterhin verfügt die Bedieneinheit rechts-oben über zwei getrennte Drehregler zum Einstellen der Lautstärke und der Rauschsperre von Band A und B. Direkt darunter befindet sich ein Lautsprecher.

Bedienteil des neuen Kenwood Mobiltransceivers

An der linken Seite der Bedieneinheit (hier nicht zu sehen im Bild) befinden sich zwei 3,5 mm Klinkenbuchsen zum Anschluss von Lautsprechern, jeweils für Band A und B. Außerdem gibt es noch eine USB Typ C-Buchse und eine Modularbuchse zur Verbindung mit dem HF-Teil.

An der rechten Seite des Bedienteils befindet sich außerdem noch ein Slot für eine SD-Karte.

Das HF-Teil besitzt auf der Vorderseite jeweils eine Modularbuchse zum Anschluss des Mikrofons (links) und des Bedienteils (rechts), einen Slot für eine SD-Karte sowie eine USB Typ C-Buchse.

HF-Teil des neuen Kenwood Mobiltransceivers

Der neue Mobilfunktransceiver soll in D-Star die gleiche Funktionalität wie das TH-D75 besitzen. Damit wäre auch der DV GATEWAY MODE (Terminalmodus) implementiert und das Gerät wäre MMDVM-Kompatibel. Zum aktuellen Zeitpunkt wissen wir allerdings noch nicht, ob das Gerät auch über Bluetooth verfügen wird und falls ja, ob diese Funktion dann ebenfalls über Bluetooth zur Verfügung stehen wird. Wir gehen jedoch sehr stark davon aus, das Bluetooth zumindest zur Unterstützung einer (in Deutschland vorgeschriebenen) Freisprecheinrichtung enthalten sein wird.

Bei dem Gerät soll es sich um einen echten Duobander handeln, mit dem zwei Bänder simultan empfangen werden können. Somit wäre es grundsätzlich auch für Satellitenbetrieb geeignet.

Neuer Kenwood Mobiltransceiver mit separatem Bedienteil

Das Mobilgerät hat aktuell noch keine Modellbezeichnung wie TM-Dxxx und wird aktuell einfach nur als “Car Transceiver” bezeichnet. Er soll ab 2025 erhältlich sein und der Preis soll über dem des TH-D75 liegen.

Die Bilder stammen aus der YouTube Live-Übertragung von Prep Ham Paul.

Sobald wir bessere Bilder und weitere Informationen haben werden wir den Artikel für euch aktualisieren.

Was haltet ihr vom neuen Kenwood? Wird er den Weg in euer Shack oder euer Auto finden? Schreibt es uns gerne in die Kommentare unter diesem Beitrag oder diskutiert es mit uns in unserer Telegram- und oder WhatsApp-Gruppe.

Team DL-Nordwest, Stephan 9V1LH/DG1BGS


Möchtest du das Projekt DL-Nordwest unterstützen? Dann teile gerne unsere Beiträge und oder oder hinterlasse uns eine (kleine) Spende 🤑 Danke! 😘

APRS-IS Wetterstation mit der LaCrosse WS2300

In diesem Beitrag beschreibe ich, wie die Wetterdaten einer LaCrosse WS2300 Wetterstation zusätzlich an das APRS-IS Netzwerk gesendet werden können.

Das Wetter in Ostfriesland ist oft wechselhaft und meist windig, geprägt von milden Sommern, kühlen Wintern und häufigen Regenschauern. Die Nähe zur Nordseeküste sorgt generell für ein maritimes Klima. Als Technik-affiner Funkamateur finde ich es sehr spannend, die Wetterdaten selbst zu erfassen. Damals kaufte ich mir dazu eine gebrauchte LaCrosse WS2300 Wetterstation, da diese in der APRS-Gemeinschaft oft verwendet wurde. Dieses lag nicht zuletzt daran, dass zahlreiche APRS-Hardware den direkten Anschluss und somit die Übertragung der Wetterdaten ins APRS-Netzwerk ermöglichten.

So betrieb ich die Wetterstation einige Jahre an meinem ehemaligen QTH am Bodensee, bevor sie nach dem Umzug in einem Karton verschwand.

Otmar DJ1OF bei der Installation der Wetterstation am alten QTH JN47MR in 2016

Da die Wetteranlage meines Vaters DL9BGG dem rauen Ostfriesischen Wetter auf Dauer nicht gewachsen war entschlossen wir uns im Mai diesen Jahres kurzerhand, meine alte Wetterstation zu testen und an seinem QTH zu installieren.

Ein erster Test im Innenraum wurde erfolgreich bestanden und so Stand einer Installation auf dem Hausdach nichts mehr im Wege.

Da mein Vater keinen APRS-Sender betreibt, ich die Daten aber gerne ins APRS-Netzwerk spielen wollte, um mir auch in Singapur ein Bild über das aktuelle Wetter in Singapur machen zu können, suchte ich nun nach einem Weg, die Daten direkt ins APRS-IS Netzwerk zu senden.

Da ich das Rad, auch aus Zeitgründen, nicht komplett neu erfinden wollte und ich mir sicher war, dass dieses in etlichen Projekten bereits realisiert wurde, recherchierte ich im Internet nach geeigneten Lösungen. Nach nur kurzer Zeit wurde ich im Internet fündig und musste mir die einzelnen Bausteine nur gemäß meiner Konfiguration zusammensetzen.

Der slowenische OM Andrej S55MA beschreibt in seinem HAM Blog in dem Beitrag “La Crosse WS2300, WS2307 series APRS with Xastir” ein vom ihm geschriebenes Script, welches das Programm Fetch2300 nutzt und die Daten der Wetterstation zunächst in eine temporäre Textdatei schreibt. Fetch2300 kommt als Teil des open2300 Projektes von dem Dänen Kenneth Lavrsen, welches nicht mehr weiterentwickelt wird. Das Script von Andrej S55MA öffnet dann diese Textdatei um sie zu lesen, wertet die Daten dann aus und schreibt sie in einen Textstring, der von der Linux APRS-Software Xastir gelesen werden kann. Sein Script stellt außerdem einen Webserver bereit, mit dem sich Xastir dann verbinden kann, um sich die Textzeile mit den Wetterdaten zu holen. In seinem Blog beschreibt er außerdem detailliert die dazu erforderlichen Installationsschritte.

Xastir erfordert jedoch die Verwendung einer grafischen Oberfläche (Gui). Da ich das Ganze auf einem Raspberry Pi nebenher laufen lassen wollte, auf dem bereits ein OpenWebRX+ ohne grafische Oberfläche läuft und ich die anderen Funktionalitäten einer vollen APRS-Software in meinem Fall nicht benötige, suchte ich nach einer anderen Möglichkeit. OpenWebRX+ verwendet DireWolf von WB2OSZ, um die mit dem SDR empfangenen APRS-Pakete zu decodieren und ins APRS-IS Netzwerk weiterzuleiten. Was lag also näher, eine entsprechende Bake für die Wetterdaten zu konfigurieren?

Leider führte mich auch das in eine Sackgasse. Zwar konnte ich die Wetterdaten als Bake aussenden, jedoch nicht in dem Bakenformat, um sie als Wetterstation zu erkennen. Eine neue Lösung musste also her. Ich entschied mich kurzerhand, das Script von Andrej S55MA so umzuschreiben, dass es statt der Bereitstellung eines Webservers, über den die Daten abgerufen werden, die Daten gleich selbst ans APRS-IS Netzwerk sendet. Glücklicherweise fand sich unter dem Titel Send APRS objects or telemetry via Bash auch für diese Aufgabe eine passende Anleitung in Andrej’s Blog. Ich musste also nur seine beiden Blog Einträge kombinieren und schon hatte ich Erfolg.

Wetterdaten von DL9BGG-13 auf aprs.fi

Screenshot von aprs.fi

DL9BGG-13 auf aprs.fi

Die Anpassung meines Scriptes basiert auf Version 1.6 seines Scriptes. Im Eingangsbereich des Scriptes konfigurieren wir zunächst unser Rufzeichen, die zu verwendende SSID, den dazugehörigen Passcode, den Längen- und Breitengrad der Wetterstation im DDM-Format (Dezimal-Minuten), sowie optional einen statischen Kommentar (z.B., welche Wetterstation verwendet wird). Außerdem definieren wir noch, an welchen APRS-IS Server gesendet werden soll, dessen Port und das Intervall in Sekunden, indem gesendet werden soll. Schließlich benötigt das Script noch den vollständigen Pfad zur open2300 Konfigurationsdatei. Abweichend zu Andrej’s Anleitung habe ich diese in dem Verzeichnis “/usr/local/etc/” liegen.

#DEFINE VARIABLES
callsign="xxxxxx"
aprsssid="13"
passcode="xxxxx"
lat="0000.00N"
long="00000.00E"
comment="LaCrosse WS2300"
server="euro.aprs2.net"
port="14580"
interval="60"
ws2300config="/usr/local/etc/open2300.conf"

Das Auswerten und schreiben der einzelnen Werte ist identisch zu Andrej’s Script mit dem Unterschied, dass ich zusätzlich noch die Tendenz und die Vorhersage auswerte und später mit in den Kommentar schreibe.

tendency=$(cat "$fetch_path" | grep -oP 'Tendency\s+\K\S+')
forecast=$(cat "$fetch_path" | grep -oP 'Forecast\s+\K\S+')

Interessanter wird es jetzt beim Zusammenbau des Bakenstrings. Der zusammengebaute Bakentext mit den Werten sieht dann beispielhaft so aus:

DL9BGG-13>APN000,TCPIP*,qAC,T2PRT:@025940z5336.60N/00709.97E_157/009g...t068r000p000P...h71b10544LaCrosse WS2300, Tendency: Falling, Forecast: Rainy

Schließlich starte ich das Script einfach durch einen cronjob, wenn der Raspberry Pi hochfährt. Führt dazu den Befehl sudo crontab -e aus und ergänzt in einer neuen Zeile:

@reboot bash /usr/local/sbin/wxdata.sh &

Interessierte können mein modifiziertes Script hier herunterladen.

Linux-Script: WS2300 Wetterdaten an APRS-IS Senden

#This script reads weather data via fetch program which is part of Open2300 suite written by Kenneth Lavrsen (http://www.
#lavrsen.dk/foswiki/bin/view/Open2300/WebHome).
#It outputs the right data needed to feed Xastir for APRS weather reports. The scripts utilizes Ncat utility as server to
#serve the fetched output to Xastir.
#Fetched Data is pushed to Ncat server and then to Xastir. (Fetched data -> Ncat server -> Xastir)
#Ncat is part of Nmap, get it by installing Nmap.
#This script should work for LaCrosse weather stations, WS23xx series. Testing was done with WS2307.
#Written by S55MA and S56IUL, May 2016
#Origin Source: https://s55ma.radioamater.si/2016/05/03/la-crosse-ws2300-ws2307-series-aprs-with-xastir/

# Modified by DG1BGS/9V1LH, 23rd June 2024
# Removed the web server. APRS data is now sent directly to the APRS-IS network using ncat.
# Please update the variables in the section below.
# For more information, visit dl-nordwest.com

Größe: 12 kB
Version: 2024-07-23

Tipp: Vergabe von eindeutigen Com-Port Namen unter Linux

Um sicherzustellen, dass einem externen Gerät unter Linux immer der gleiche Com-Port zugewiesen wird, kann man externen Geräten eindeutige Namen zuweisen. In meinem Fall habe ich in dem Verzeichnis /etc/udev/rules.d eine Datei mit dem Namen 99-usb-serial.rules angelegt und die folgenden Zeilen eingefügt:

#Weather station open2300
#ID 067b:2303 Prolific Technology, Inc. PL2303 Serial Port / Mobile Phone Data Cable
SUBSYSTEM=="tty", ATTRS{idVendor}=="067b", ATTRS{idProduct}=="2303", SYMLINK+="ttyWX"

Die Vendor- und Product-ID eures externen Gerätes erhaltet ihr nach Eingabe des Befehls lsusb. In meinem Fall erhalte ich nach Eingabe des Befehls u.a. die folgende Ausgabe:

Bus 003 Device 002: ID 067b:2303 Prolific Technology, Inc. PL2303 Serial Port / Mobile Phone Data Cable

Ab dem nächsten Neustart des Rechners wird der Wetterstation in diesem Beispiel jetzt immer der Com-Port /dev/ttyWX zugeordnet, den ich auch in der open2300.conf gesetzt habe.

Fazit

Das Projekt war kurzweilig und hat viel Spaß gemacht, da sich nach nur kurzer Zeit ein Erfolg eingestellt hat. Durch die gute Programmierarbeit und Dokumentation von Andrej S55MA war es sehr einfach, das Gewünschte entsprechend der eigenen Umgebung zu implementieren. An dieser Stelle meinen herzlichen Dank an alle, die ihre Projekte für andere zur Verfügung stellen und dokumentieren.

Durch das übermitteln der Wetterdaten an das APRS-IS Netzwerk sind diese jetzt nicht nur lokal verfügbar, sondern auch von jedermann weltweit abrufbar. Und obendrein erhält man auf aprs.fi noch eine statistische Darstellung der Wetterdaten.

Ich habe auch schon Ideen für künftige Erweiterungen: Die Wetterdaten könnten zusätzlich an einen MQTT-Broker gesendet werden, um sie auch an andere Stelle auszuwerten und darzustellen. Ggf. wäre das auch ein tolles Projekt für ein Wetterdisplay mit ePaper-Display. Außerdem könnte man die APRS-Baken zusätzlich durch den Einsatz eines kleinen Funkmoduls auch über VHF lokal abstrahlen und oder oder sie für eine LoRa-Telemetriebake nutzen.

Betriebt ihr auch eine eigene Wetterstation und nutzt die Daten nicht nur für euch selber? Wenn ja, berichtet gerne in den Kommentare unter diesem Beitrag über euer Projekt oder diskutiert es mit uns in unserer Telegram- und oder WhatsApp-Gruppe. Eventuell habt ihr ja auch Lust, euer eigenes Projekt hier mal vorzustellen.

Team DL-Nordwest, Stephan 9V1LH/DG1BGS


Möchtest du das Projekt DL-Nordwest unterstützen? Dann teile gerne unsere Beiträge und oder oder hinterlasse uns eine (kleine) Spende 🤑 Danke! 😘

Wir bauen uns eine Meshtastic-Node

In diesem Beitrag schildern wir den Aufbau und die Inbetriebnahme einer Meshtastic-Node.

Meshtastic ist ein innovatives Open-Source-Projekt, das sich auf die Entwicklung eines robusten, kostengünstigen Kommunikationsnetzwerks ohne Internetverbindung konzentriert. Es verwendet Long-Range (LoRa) Funktechnologie, um Nachrichten über weite Entfernungen zu senden, was besonders in abgelegenen oder katastrophengefährdeten Gebieten nützlich ist. Nutzer können mittels kleiner, tragbarer Geräte Textnachrichten austauschen und ihren Standort teilen, auch wenn keine Mobilfunknetze oder WLAN verfügbar sind.

Auch in DL-Nordwest beschäftigt man sich mit Meshtastic. Während Anfangs nur vereinzelte OM’s mit LoRa und Meshtastic experimentiert haben, kommt Dank einer Initiative des OV Leer Z31, nun Bewegung ins Spiel: Auf dem Wasserturm in Leer wurde zur Reichweitenerhöhung eine Node installiert, was etliche OM’s in der Umgebung dazu veranlasst haben sich selbst eine Node zu beschaffen und mit dem Experimentieren zu beginnen. Mittlerweile sind in Ostfriesland und Umgebung schon weit über 60 Clients aktiv, Tendenz steigend. Auch die ersten Stationen in den Niederlanden haben sich schon angeschlossen.

Im Folgenden schildern wir die einzelnen Schritte zur Inbetriebnahme einer Meshtastic-Node.

Hardware

Wer an Meshtastic teilnehmen möchte benötigt zunächst eine geeignete Hardware. Eine Auflistung kompatibler Meshtastic Hardware findet ihr hier: https://meshtastic.org/docs/hardware/devices/. Sehr beliebt sind aktuell das LoRa V3 von HELTEC und das LoRa T3-S3 von LILYGO. Bitte achtet beim Kauf unbedingt darauf, dass ihr die 433 MHz Variante bestellt! Grundsätzlich reichen Varianten ohne integrierten GPS-Empfänger, da selbst bei Portabelbetrieb die Positionsdaten vom Mobiltelefon übernommen werden können.

Das HELTEC LoRa V3 im Gehäuse mit interner Antenne und aufgespielter Firmware

Wir haben uns für das Heltec LoRa V3 entschieden und haben uns auch gleich ein passendes Gehäuse sowie ein kurzes, koaxiales Adapterkabel von U.FL zu SMA Einbaubuchse mitbestellt.

Heltec LoRa V3, passendes Gehäuse und Adapterkabel

Zum Lieferumfang des Heltec LoRa V3 gehören das LoRa-Modul selbst, eine kurze Antenne, die sich direkt in das Gehäuse einbauen lässt, zwei Pin-Header zum Anlöten und Anschluss von Erweiterungen (z.B. Sensoren) und ein Anschlusskabel für eine Lithium-Batterie. Letztere passt nicht mit ins Gehäuse, ließe sich aber hinter das Gehäuse kleben.

Das Anschlusskabel der mitgelieferten Antenne kann, wie hier gezeigt, in einer Schleife in das Gehäuse gelegt werden, da es für dieses Gehäuse etwas zu lang ausfällt.

Lieferumfang Heltec LoRa V3: Modul, Antenne, Pin-Header und Akku-Anschlusskabel
Heltec LoRa V3 mit angeschlossener Antenne im Gehäuse

Wer stattdessen lieber eine externe Antenne anschließen möchte, kann eine kleine Aussparung an der Oberseite des, für die interne Antenne vorgesehenen, Gehäusefaches für das Adapterkabel vorsehen, z.B. durch Herausfeilen, Herausknipsen oder mit einem Messer. Zur mechanischen Zugentlastung des Adapterkabels sollte außerdem noch ein kleiner Kabelbinder angebracht werden.

Nachbearbeitetes Gehäuse zum Anschluss einer externen Antenne
Heltec LoRa V3 im Gehäuse mit interner Antenne (oben) und Anschluss für externe Antenne (unten)

Firmware

Als nächstes spielt ihr nun die passende Meshtastic-Firmware auf das Heltec LoRa V3 auf. Dazu schließt ihr das LoRa-Modul über ein USB-Datenkabel an euren Computer an.

Ihr müsst nun zunächst den Com-Port in Erfahrung bringen. Dazu öffnet ihr unter Windows den Gerätemanager (Windows +x Taste drücken und Gerätemanager auswählen). In unserem Fall fehlte der passende Treiber, damit der PC mit dem Heltec-Modul kommunizieren kann.

Im Fall des Heltect LoRa V3 wird der CP210x Treiber von Silicon Labs benötigt. Diesen könnt ihr hier herunterladen.

Nach der erfolgreichen Installation des Treibers wird der dem Heltec-Modul zugeordnete Com-Port im Gerätemanager angezeigt. In unserem Fall ist es Port 5.

Dank eines Web-Flashers gestaltet sich das Aufspielen der Firmware sehr einfach. Aber Achtung, der Webflasher funktioniert nicht in jedem Browser, Chrome und Edge sind aber kompatibel.

Screenshot von flasher.meshtastic.org

Meshtastic Web-Flasher

Im Webflasher wählt ihr zunächst eure Hardware, in unserem Fall also das Heltec V3 und die gewünschte Firmware-Version (die Neuste stabile Firmware ist beim Schreiben dieses Artikels die Version 2.4) .

Nach Betätigung des Flash-Buttons bestätigt ihr zunächst das Kleingedruckte (Continue). Im nächsten Fenster aktiviert ihr unter 3 “Full Erase and Install”.

Nun werden euch in einer Liste alle zugeordneten Com-Ports angezeigt. Wählt hier den zuvor ermittelten mit CP2102 und betätigt “Connect”.

Haben ihr alles richtig gemacht, wird die Firmware nun auf das Modul übertragen.

Nach Erreichen der 100% sollte euch das Display des Heltec mit Meshtatstic begrüßen und uns dazu auffordern, zunächst die Region festzulegen.

Konfiguration

Je nachdem, welches Mobiltelefon ihr verwendet, installiert ihr jetzt die Meshtastic App aus dem Google Play Store (Android) oder dem Apple App Store (iOS). Wir geben hier keine detaillierte Anleitung für den Umgang mit der App, die Konfigurationsschritte sind aber zusammengefasst wie folgt:

  1. Node via Bluetooth mit Mobiltelefon bzw. App verbinden
Die App (iOS) erkennt verfügbare Meshtastic-Nodes
Der auf dem Display angezeigte Code muss für die Bluetooth-Paarung eingegeben werden
  1. LoRa Einstellungen vornehmen
  • LoRa Region: European Union 433mhz
  • Presets: Long Range – Moderate
  • Frequency Override: 434,100 MHz* (Frequency-Slot 6)
  • Number of hops: 7
  • Power: Maximale Leistung (30 dBm)
  1. User konfigurieren
  • Licensed Operator: Einschalten (erlaubt die maximale Sendeleistung)
  • Call Sign: Euer Rufzeichen, ggf. mit Erweiterung, z.B. DG1BGS-JO33NO-I09 (die iOS-App lässt max. 8 Zeichen zu)
  • Short Name: z.B. BGS (max. 4 Zeichen)
Eingabe des Benutzerkonfiguration (iOS)
  1. Chatgruppen anlegen

Bei dem Anlegen von Chatgruppen ist unbedingt darauf zu achten, dass die Verschlüsselung deaktiviert wird, da diese ist im Amateurfunk nicht zulässig ist! In Ostfriesland habe sich die folgenden Chatgruppen etabliert.

KanalName
0LongMod
1I09
2Z31
3Ostfrl
4Notfunk
5DL-Nordwest
Stand: August 2024

Die Reihenfolge ist dabei grundsätzlich beliebig, Kanal 0 muss aber immer LongMod sein! Um nicht alle Chatgruppen händisch eingeben zu müssen, könnt ihr auch einfach den folgenden QR-Code einscannen oder ihn anklicken.

Meshtastic-Ostfriesland Kanäle, Stand August 2024
Alle Kanäle wurden angelegt (iOS)

Nun seid ihr in Meshtatstic QRV und solltet in der Node-Liste nach nur kurzer Zeit die ersten empfangenen Nodes sehen.

Nodes Ansicht (iOS): Nun sollten nach und nach die ersten Nodes in der Liste erscheinen

Leitfaden und Neuigkeiten und Supportgruppe

Wer eine ausführlichere Hilfestellung benötigt, findet sie im Leitfaden von Harald DG6BCW, den ihr hier herunterladen könnt.

Alle Neuigkeiten zum Thema Meshtastic in Ostfriesland erfahrt ihr in dem Blog von Marcus unter https://dm5mn.de/?cat=2.

Screenshot von dm5mn.de

Meshtastic Ostfriesland Blog von Marcus DM5MN

Weitere Unterstützung erhaltet ihr u.a. in der Telegram-Gruppe Meshtastic Ostfriesland.

Wir haben für euch alles noch einmal zusätzlich auf unserer Übersichtsseite Meshtastic Ostfriesland zusammengefasst, die auch über das Hauptmenü erreichbar ist.

Die Inbetriebnahme einer Meshtatsic-Node gestaltet sich sehr einfach. Zudem ist die Hardware sehr erschwinglich, so dass die Teilnahme am stark wachsenden Netzwerk keine Hürde darstellen sollte. Meshtastic bietet noch weitere Möglichkeiten, u.a. die Übertragung von Telemetriedaten z.B. von Wettersensoren. Es gibt aber auch noch viele weitere Anwendungen für die LoRa-Hardware, über die wir hier auf DL-Nordwest zukünftig berichten werden.

Seid ihr auch schon in Meshtastic qrv? Was sind eure Erfahrungen? Diskutiert es gerne mit uns in den Kommentaren unter diesem Beitrag oder in unserer Telegram- und oder WhatsApp-Gruppe.

Euer Team DL-Nordwest


Möchtest du das Projekt DL-Nordwest unterstützen? Dann teile gerne unsere Beiträge und oder oder hinterlasse uns eine (kleine) Spende 🤑 Danke! 😘

FT8 und FT4 unter Linux mit dem KENWOOD TH-D74/75

In diesem Beitrag beschreibt Matt. DL1BJL, wie ihr unter Linux mit eurem Kenwood TH-D74 oder TH-D75 digitale Betriebsarten wie FT8 und FT4 auf Kurzwelle empfangen könnt.

Um als UKW-Handfunkbenutzer ohne Kurzwellengerät auch mal digitale Betriebsarten auf Kurzwelle ausprobieren zu können, kann man tatsächlich auch die Handfunke benutzen, wenn die das denn unterstützt. Die Geräte von Kenwood TH-D74 und TH-D75 lassen das auf VFO B zu.

Ich möchte hier kurz die Konfiguration unter Debian / Ubuntu aufzeigen (bei mir Kubuntu 24.04 LTS). Hier kam das TH-D75 zum Einsatz, das TH-D74 sollte genau so funktionieren. Unter Windows funktioniert das ähnlich, ist hier aber nicht Gegenstand.

Zuerst muss sichergestellt werden, dass das Gerät nicht als Speichergerät per USB-Kabel mit dem Computer verbunden ist. Das kann man im Menü Nummer 980 nachsehen (COM + AF / IF OUTPUT muss aktiviert sein, das ist aber Standard). Somit lässt sich die Funke per USB steuern und gibt auch Audio per USB aus.

Als nächstes installieren wir die Software. Die Befehle

sudo apt update && sudo apt search wsjtx

aktualisieren die Paketlisten und zeigen, welche WSJTX-Version verfügbar ist. Der Befehl

sudo apt install -y wsjtx

installiert alles, was nötig ist. Anschließend können die Installationspakete mit

sudo apt clean

wieder gelöscht werden, da sie nicht mehr gebraucht werden (die Dateien sind ja installiert).

Alternativ kann auch die JTDX Software benutzt werden, die auf WSJT-X basiert:

sudo apt search jtdx

Die scheint aber nur ab Ubuntu 24.04 “Noble Numbat” verfügbar zu sein und wurde von der Community weiterentwickelt. Sie ist in meinen Augen komfortabler. Aber das ist sowieso nur von Interesse, wenn man auch senden kann 😉

Jetzt das Programm starten, und über File/Settings konfigurieren:

General kann man konfigurieren, muss man aber nicht. Man sendet ja nicht. “Blank line between decoding periods” macht aber die Anzeige übersichtlicher.

Radio ist wichtig: Zuerst unter “Rig” Kenwood TH-D74 auswählen. Beim “Serial Port” muss man ermitteln, wo die Handfunke per USB angeschlossen ist. Dazu auf der Konsole das folgende Kommando eintippen:

sudo ls -l /dev/serial/by-id/

Das wird z.B. “usb-JVCKENWOOD_TH-D75-if00 -> ../../ttyACM0” liefern oder ttyACM3 oder wie auch immer. ttyACMx wird es sein und die Nummer ist wichtig.

Im Tab Radio dann entweder bei “Serial Port” in der Auswahlliste den Port auswählen oder selbst eintippen: /dev/ttyACMx, wobei x mit dem Port ersetzt wird.

Bei “PTT Method” wählen wir CAT, weil das die Funke unterstützt und unter Mode USB, den Rest belassen wir so.

An dieser Stelle kontrolliert bitte noch einmal, dass am Funkgerät VFO B ausgewählt ist und nicht etwa ein Speicherkanal. Jetzt drücken wir den Button “Test CAT” und der sollte grün werden. Wenn nicht, ist etwas falsch und wir müssen das korrigieren. War er grün, bestätigen wir mit “Ok“. Bitte an dieser Stelle auch noch einmal schauen, ob das der Empfangsmodus des Funkgerätes durch die Software auf USB gestellt wurde. Falls nicht müsst ihr diese Einstellung selbst vornehmen.

Nun muss noch der Audio-Pegel am PC angepasst werden. Die Handfunke sollte als Mikrofon erkannt worden sein und der Pegel im Programm so angepasst werden, dass etwa 50 dB erzielt werden (bei WSJT-X links unten, muss grün sein / bei JTDX rechts unten, sieht orange-farbend aus).

Einstellung der Lautstärkeregler am Beispiel KDE. Das TH-D75 dient hier als Signalquelle.

Jetzt wählt ihr noch die gewünschte Betriebsart aus, also z.B. FT8. Bei WSJT-X ist das der 4. Menüpunkt (File/Configurations/View/Mode…), bei JTDX der 3. (File/View/Mode…).

Nun sollte man schon die ersten decodierten Rufzeichen sehen. Wichtig: Die Zeit muss synchron sein! Das sollte unter Linux kein Problem sein. Überprüfen kann man das unter http://time.is.

Achja: Die interne Antenne (“Bar antenna”) sollte über Menü 104 auf “ANT Connector” umgestellt werden. Als Antenne reichte bei mir abends ein 3 m langer Draht am SMA-Anschluss, um die Anzeige wie im Bild zu erzeugen.

Viel Spaß beim Experimentieren, 73 de DL1BJL Matt.

Hast du auch bereits andere Betriebsarten mit deinem TH-D74/75 getestet? Hast du weitere Themen, die du wie Matt. DL1BJL gerne in einem Gastbeitrag mit uns teilen würdest. Schreibt es uns gerne in die Kommentare unter diesem Beitrag oder diskutiert es mit uns in unserer Telegram- und oder WhatsApp-Gruppe.


Möchtest du das Projekt DL-Nordwest unterstützen? Dann teile gerne unsere Beiträge und oder oder hinterlasse uns eine (kleine) Spende 🤑 Danke! 😘

B.B.Link: Kenwood TH-D74/75 mit der aprs.fi App auf dem iPhone verbinden

In diesem Beitrag stellen wir euch den Nachfolger des BLE-BT-TNC vor und unterziehen ihm einen Test im Freien.

Neulich haben wir euch in dem Beitrag TH-D74 mit aprs.fi auf dem iPhone koppeln eine Möglichkeit aufgezeigt, wie ihr euer Kenwood TH-D74 via Bluetooth mit eurem iPhone verbinden könnt, um es mit Anwendungen wie aprs.fi (iOS) oder z.B. RadioMail (iOS) zu verwenden. Wir haben euch außerdem erklärt, warum ihr euer Kenwood Handfunkgerät nicht direkt verbinden könnt. Leider unterstützt auch sein Nachfolger, der Kenwood TH-D75, kein Bluetooth BLE, so dass das dort beschriebene auch für das TH-D75 zum tragen kommt.

Seit unserem letzten Beitrag ist einige Zeit vergangen und mittlerweile hat Georges WH6AZ seine Firmware komplett überarbeitet und seinem Projekt einen neuen Namen gegeben: B.B. Link

Im Vergleich zum Vorgänger BLE-BT-TNC bietet B.B. Link die folgenden weitere Funktionen:

  • Automatischer Verbindungsaufbau mit dem TH-D74 bzw. TH-D75 nach einmaliger Paarung
  • Fernsteuerung des Funkgerätes, (Aktivierung KISS-Mode, Frequenzeinstellung) falls gewünscht
  • Ein- und Ausschalten das Adapters über kapazitiven Taster
  • LED-Signalisierung für Verbindungsstatus, Datenpakete, Fehler und Batteriestatus
  • Konfiguration und Firmware-Aktualisierung des TinyPICO über Konfigurations-App B.B. Link Configurator (iOS)

In dem folgenden Video beschreibt Georges WH6AZ Schritt-für-Schritt in englischer Sprache die Hintergründe des Projektes, wie man die Firmware herunterladen, auf den TinyPICO ESP32 flashen und ihn in ein 3D-Druck Gehäuse einbauen kann. Außerdem demonstriert er die Verwendung mit den Apps aprs.fi (iOS) und RadioMail (iOS).

Als Besitzer eines Kenwood TH-D74 und großer APRS-Fan musste ich B.B.Link einfach testen. Dafür folgte ich der Videoanleitung von Georges WH6AZ. Neben den in der Anleitung zu installierenden Bibliotheken musste ich zusätzlich noch ArduinoLog.h Bibliothek installieren, bevor es mit dem Kompilieren und Aufspielen der Firmware klappte.

Nun installierte ich die B.B. Link Configurator App (iOS) aus dem App-Store und startete sie.

Bild 2: B.B. Link Configurator App (iOS) nach erfolgreichen Verbindung mit dem Adapter

Der Adapter wurde von der App gleich gefunden. Im Konfigurationsmenü lässt sich der Adapter umbenennen (praktisch bei der Verwendung mehrerer Adapter), bei Bedarf die Firmware aktualisieren und festlegen, ob eine Fernsteuerung des Transceivers über Anwendungen wie RadioMail (iOS) zugelassen werden soll oder nicht.

Auch die Bluetooth Paarung funktionierte wie im Video beschrieben auf Anhieb und ich konnte mich daran machen, den Adapter für den Test vorzubereiten.

Bild 3: v.l.n.r.: 500 mAh Li-Po Akku, TinyPICO ESP32-Board und Buchse für Akku-Stecker

Bild 3 zeigt die verwendeten Komponenten aus der Bastelkiste. Der TinyPICO wird bereits mit einem Steckverbinder für einen Akkumulator geliefert, den man selbst aber noch anlöten muss. In meinem Fall verwende ich einen LiPO-Akku mit 500 mAh. Hier bitte unbedingt auf die richtige Polung des Akkus achten. Ich habe den Steckverbinder so angelötet, dass der Akku-Stecker direkt unter der USB Typ C Buchse eingesteckt wird und musste daher die Polung am Akkustecker zusätzlich umdrehen.

Bild 4: Fertig aufgebauter B.B.Link-Adapter: Als kapazitiver-Taster dient ein einfaches Drahtende

Bild 4 zeigt den fertigen Adapter. Ich habe zunächst nicht das 3D-Druck Gehäuse verwendet und den TinyPICO TNC statt dessen mit zweiseitigem Klebeband direkt auf den Akkumulator geklebt. Den Draht der hier als kapazitiver Taster dient habe ich einfach herausgeführt. Um eventuelle Kurzschlüsse zu vermeiden, habe ich noch alles in einen transparenten Schrumpfschlauch eingeschlumpft.. ähh eingeschrumpft. Fertig!

Also, ab an die frische Luft und an einem Standort mit möglichst gutem Empfang testen.

Bild 5: Kenwood TH-D74 mit Mobilfunkantenne und B.B.Link-Adapter in luftiger Höhe

Wie auch in den vorherigen APRS-Beiträgen fiel die Wahl auf den Raketenturm in OJ11vj Singapur (Bild 5). Von hier lassen sich die APRS-Signale aus dem benachbarten Malaysia gut empfangen und die eigenen Aussendungen werden zudem problemlos durch die benachbarten Digipeater weitergeleitet.

Nach kurzer Zeit hatten sich auf der Karte schon einige Stationen angesammelt (Bild 6). Um nur die Stationen anzuzeigen, die direkt via Funk empfangen wurden, habe ich Mobile-Daten für die aprs.fi (iOS) App deaktiviert (in Bild 6 an der Meldung “Cannot contact service” links-oben gut zu erkennen).

Bild 7: Empfangene und gesendete Datenpakete in der aprs.fi iOS App

Bild 7 zeigt die empfangenen (blauen) und gesendeten (roten) Datenpakete. Wie man hier erkennt wurde mein Datenpaket von den benachbarten Digipeatern empfangen und weitergeleitet.

Das abschließende Video zeigt das TH-D74 im KISS-Modus auf der hierzulande verwendeten APRS Simplex-Frequenz. Vom Funkgerät empfangene Datenpakete werden von dem TinyPICO durch eine grüne LED signalisiert. Wie ihr seht: Hier ist ganz schön was los in APRS.

Kenwood TH-D74 und B.B.Link-Adapter in Aktion

Fazit: B.B.Link ist eine kostengünstige aber sinnvolle Erweiterung, die auch iPhone-Besitzer in den Genuss der Bluetooth-Funktionalität des Kenwood TH-D74 bzw. TH-D75 kommen lässt. Wer das Projekt selbst verwirklichen möchte findet alle Informationen auf Github.

Wünschenswert wäre aus meiner Sicht, wenn die empfangenen und gesendeten Datenpakete zusätzlich zu Testzwecken über die serielle USB-Schnittstelle des TinyPICO ausgegeben würden. Außerdem wäre ein Modus denkbar, bei dem der TinyPICO die vom Funkgerät im Standalone-Betrieb (APRS- statt KISS-Modus) weitergeleiteten Rohdaten umwandelt und an die aprs.fi App weiterleitet. So könnte man weiterhin APRS am Funkgerät im vollen Umfang nutzen, empfangene Stationen aber bei Bedarf zusätzlich auf der Karte darstellen. Da die Firmware unter der GPL-3.0 Lizenz veröffentlicht wurde, ließen sich gewünschte Erweiterungen selbst ergänzen. Ich habe in meinem Fall aber an den Autor geschrieben, eventuell baut er die Erweiterungen ja ein.


Update 30.03.2024:

Den Artikel mit einer live Demonstration gibt es jetzt auch in Videoform, denn wir waren zu Gast beim DD0UL QTC.

DL-Nordwest über B.B.Link, zu Gast im DD0UL QTC

Was haltet ihr von Georges Projekt? Gibt es weitere Einsatzszenarien oder sogar Apps, mit denen ihr B.B.Link testen möchtet? Falls ja, dann hinterlasst uns gerne einen Kommentar unter diesem Beitrag oder diskutiert es mit uns in unserer Telegram-Gruppe.

Team DL-Nordwest, Stephan 9V1LH/DG1BGS

TH-D74 mit aprs.fi auf dem iPhone koppeln

In diesem Artikel zeigen wir euch eine technische Lösung, wie ihr euer Kenwood TH-D74 via Bluetooth mit eurem iPhone oder iPad verbinden könnt, z.B. um empfangene APRS-Stationen auf einer Karte darzustellen.

Wer sein KENWOOD TH-D74 für APRS nutzt, wird dessen großes Farbdisplay zur Darstellung der empfangenen Stationen mögen. Es werden u.a. die aktuelle Entfernung und Richtung zum eigenen Standort dargestellt. Oft wünscht man sich allerdings eine Kartendarstellung. Das TH-D74 bietet verschiedene Möglichkeiten, wie sich empfangenen Daten z.B. via USB-Verbindung oder Bluetooth an externe Geräte mit einer entsprechenden APRS-Anwendung weiterleiten lassen. Für die stationäre Nutzung lässt sich unter Windows z.B. APRSISCE/32 und unter Linux YAAC verwenden, um nur einige Beispiele zu nennen. Für mobile Anwendungen bietet sich unter Android die Anwendung APRSdroid an. Was macht man aber als Besitzer eines iPhones oder iPads?

Problem: Klassisches Bluetooth und iOS

Entwickler von Apps für iOS, dem Betriebssystem für das iPhone, mussten in der Vergangenheit mit einigen Einschränkungen leben. APPLE hatte die Verwendung der Bluetooth Funktionalität auf Grund von Sicherheits- und Energieeffizienzbedenken nämlich so stark eingegrenzt, dass viele Anwendungen die eine Bluetooth-Kommunikation benötigen nicht realisiert werden konnten. Das erklärt auch, warum es zwar viele Apps für das Betriebssystem Android gibt, nicht aber für iOS. Mit der Einführung des Bluetooth Low Energy Standards (kurz BLE) änderte sich dieses jedoch. Der Standard ermöglicht nicht nur eine sicherere Kommunikation zwischen den Geräten sondern verbraucht dabei auch wesentlich weniger Energie und ist damit besonders für Anwendungen geeignet, bei denen die Verbindung zwischen zwei Geräten lange aufrechterhalten bleiben muss.

Damit stehen nun auch Amateurfunk-Apps unter iOS zur Verfügung, die via Bluetooth mit externer Hardware kommunizieren können. Eine solche App ist aprs.fi für iOS. Diese ermöglicht u.a. die Verbindung mit einem Mobilinkd Bluetooth APRS TNC, welches die über Funk empfangenen APRS-Datenpakete via Bluetooth an die App weitergeben kann und umgekehrt. Damit ist man beim APRS-Betrieb nicht mehr auf das mobile Datennetz beschränkt. Aber funktioniert das auch mit einem Kenwood TH-D74?

Jein: Das Bluetooth-Interface des Kenwood TH-D74 unterstützt leider nur den Bluetooth 3.0 class 2 Standard, welcher keinen Support für das Low Energy Protokoll liefert. Wie im folgenden beschrieben, funktioniert die Bluetooth-Verbindung zwischen dem TH-D74 und aprs.fi iOS dennoch über einen kleinen technischen Umweg.

Lösung: BLE-BT-TNC (WH6AZ)

Georges, WH6AZ, hat eine Firmware für ein ESP32 basiertes Board entwickelt, welches sich via klassischem Bluetooth mit dem TH-D74 verbindet und gleichzeitig mit aprs.fi iOS via Bluetooth LE. Das kleine Zusatzgerät macht nichts weiteres, als die Datenpakete bidirektional durchzureichen und fungiert damit quasi nur als Übersetzer der beiden Bluetooth-Standards. In diesem YouTube Video könnt ihr das BLE-BT-TNC von WH6AZ im Einsatz sehen:

Kenwood TH-D74 mit BLE-BT-TNC unter aprs.fi iOS

Benötigte Komponenten

Inbetriebnahme und erste Anpassungen der Firmware

Nach Erhalt des von WH6AZ empfohlenen ESP32 Boards habe ich in der Arduino IDE die benötigte Bibliothek für den TiniPICO entsprechend der Anleitung installiert und die Firmware aufgespielt. Dieses gestaltete sich ohne Probleme und das BLE-BT-TNC war sofort einsatzbereit. In der obigen Anleitung erfahren wir außerdem, wie wir das BLE-BT-TNC zunächst mit dem TH-D74 und dann mit dem iPhone koppeln können. Mit der aktuellen BLE-BT-TNC Firmware ist es aktuell noch nicht möglich, dass sich das TH-D74 automatisch mit dem BLE-BT-TNC verbindet, sobald dieses betriebsbereit ist und sich in Reichweite befindet. Wir müssen das TH-D74 deshalb immer zuerst in den Bluetooth Pairing-Modus versetzen (Menüpunkt 934). Zusätzlich muss am TH-D74 im Menüpunkt 983 in den Interfaceoptionen KISS Bluetooth eingestellt und der KISS-Modus im Datenband aktiviert werden, damit die empfangenen Pakete an die App weitergeleitet werden oder aber von der App empfangenen Pakete vom TH-D74 ausgesendet werden können.

Die erfolgreiche Bluetooth-Verbindung wird durch eine konstant leuchtende grüne LED auf dem TinyPICO Board signalisiert. Danach kann die Verbindung mit der App auf dem Smartphone erfolgen, in meinem Fall nutze ich aprs.fi iOS. Nach erfolgreicher Bluetooth-Verbindung mit der App leuchtet die LED konstant blau. Ab jetzt funktionierte das BLE-BT-TNC bereits enwandfrei und empfangenen Stationen wurden in aprs.fi iOS auf der Karte dargestellt und die in der App konfigurierte eigene Positionsbake von dem TH-D74 ausgesendet. Die Versorgung des TinyPICO kann zwar grundsätzlich aus einer Powerbank erfolgen, ich habe mir jedoch einen 3,7 V Li-Po Akkumulator besorgt der sich an dem TinyPICO anschließen und über diesen auch wieder aufladen lässt. Hier bitte unbedingt die Polung der Anschlüsse des Li-Po beachten!

Der TinyPICO ESP32 mit 3.7 V Li-Po Akkumulator ist sehr handlich

Was mich beim Einsatz störte ist, dass die LED auf dem TinyPICO permanent in voller Helligkeit leuchtet und damit unnötig Strom verbaucht. Nach einem Blick in den übersichtlichen Quellcode und eigener Modifikation war es mir aber erfolgreich möglich, sowohl die Helligkeit der LED zu reduzieren, als auch eingehenden und ausgehende Datenpakete durch ein kurzes Aufblinken der LED in orange bzw. rot zu signalisieren.

In der aprs.fi App störte mich zudem, dass hier immer sowohl die über das Internet als auch die lokal empfangenen APRS Stationen angezeigt werden. Um nur letztere anzuzeigen haben ich in den App Berechtigungen die mobilen Daten für aprs.fi iOS deaktiviert.

Fazit und Ausblick

Das BLE-BT-TNC ermöglicht die Bluetooth-Kommunikation zwischen dem TH-D74 und dem iPhone/iPad. Neben der hier gezeigten Anwendung sind viele weitere denkbar. Die erforderliche Hardware ist relativ günstig zu beschaffen und das Aufspielen der Firmware gestaltet sich über die Arduino IDE einfach. Die Firmware ist aktuell noch recht rudimentär, ambitionierte Hobby-Programmierer können diese jedoch beliebig erweitern.

Bei meinen Experimenten kamen mir die folgenden Ideen für mögliche Erweiterungen und Experimente:

  • Testen weiterer APRS Apps mit Bluetooth-Schnittstelle unter iOS
  • Weitere und günstigere ESP32 Boards auf Kompatibilität testen, die sowohl BLE and auch klassisches Bluetooth an Board haben und sich überall beschaffen lassen
  • Umwandlung von Rohdaten in KISS Datenpakete in der Firmware des BLE-BT-TNC, damit das TH-D74 im Standalone APRS Modus betrieben werden und damit intelligent bleiben kann, die APRS Pakete aber zusätzlich auf einer Karte dargestellt werden können
  • Neue Firmware für den Einsatz des TH-D74 als standalone Digipeater, ggf. mit iGate-Funktion via WLAN

Habt ihr weitere Ideen, was man mit diesem kleinen BLE-BT-TNC in Verbindung mit dem TH-D74 anstellen könnte? Kennt ihr weitere APRS iOS-Apps die man damit testen sollte? Oder habt ihr Interesse, an der Firmware für einen Digipeater mitzuwirken? Falls ja, lasst es uns gerne in den Kommentare zu diesem Beitrag wissen.

Team DL-Nordwest, Stephan 9V1LH/DG1BGS

Unterwegs mit dem Kenwood TH-D74E

Als ich 1999 die Amateurfunkprüfung der Einsteigerklasse ablegte war mit dem Kenwood TH-D7E gerade das erste Handfunkgerät mit integriertem TNC erschienen. Da ich schon zu CB-Funk Zeiten intensiver Packet Radio Nutzer war und mich die Vorstellung der portablen Nutzung dieser Betriebsart schon damals sehr reizte, führte für mich quasi kein Weg an diesem Gerät vorbei.

Treuer Begleiter Kenwood TH-D7E v1 und Zubehör, kurz vor dessen Verkauf

Rund 17 Jahre später, im Dezember 2016, erwarb ich dann das Kenwood TH-D74E. Mit dessen eingebautem GPS-Receiver sind Betriebsarten wie APRS viel komfortabler geworden. Das Handfunkgerät bietet aber noch jede Menge anderer Features wie D-STAR und einem Breitbandempfänger. Zudem besitzt das Gerät eine Bluetooth-Schnittstelle zum Betrieb mit einem externen Headset, der Programmierung oder Fernbedienung. Die Schnittstelle kann aber auch dazu genutzt werden, AX.25– Datenpakete an eine externe Anwendung weiter zu leiten. Wir werden darauf in einem späteren Beitrag noch etwas genauer eingehen.

Nun aber zu der eigentlichen Aktivität: An diesem Tag war mein Ausflugsziel der Upper Seletar Reservoir Park in Singapur. Hier gibt es einen begehbaren Turm in Form einer Rakete, Locator OJ11vj, von dem aus man nicht nur eine wunderschöne Aussicht erhält, sondern auch Funktechnisch gute Reichweiten verspricht.

Da ich bequem im Sitzen funken wollte, positionierte ich zunächst die kleine mitgebrachte Diamond Magnetfußantenne MR-73 SMA-M auf der Reling der Aussichtsplattform. Danach prüfte ich, welche Relaisfunkstellen sich von dem Standort aus erreichen bzw. arbeiten lassen. Das lokale VHF Amateurfunkrelais 9V1RS im Süden von Singapur ließ sich ohne große Probleme auftasten und empfangen. Leider kam auch nach mehrmaligem CQ rufen jedoch kein QSO zustande. Das lokale UHF-Relais 9V1RMP im Osten war schon deutlich schwächer im Empfang, ließ sich dennoch öffnen. Da Singapur Relaistechnisch sonst nichts mehr zu bieten hat nutzte ich die Repeater -App auf meinem iPhone, um gezielt nach Relaisfunkstellen des benachbarten Malaysien zu schauen. Die beiden angezeigten Relais 9M2RGP (147,825 MHz -0,6) und 9M4RGP (145,7375 MHz -0,6) im 2m-Band, die sich wohl beide auf dem Berg Gunung Pulai befinden, konnte ich jeweils stark empfangen. In Singapur ist im 2m-Band jedoch nur Sendebetrieb im Bereich von 144 – 146 MHz erlaubt, wodurch Funkbetrieb zumindest über 9M2RGP von Singapur aus nicht erlaubt ist. Frühere Bestrebungen, den Nachbarn dazu zu bewegen, die angrenzenden Relais in den in Singapur erlaubten Frequenzbereich zu verschieben schlugen bisher leider fehl. Beim Scannen über die Frequenzen konnte ich noch mehr Signale empfangen, z.B. ein DMR-Signal auf 439,0375 MHz, welches ich bisher nicht zuordnen kann, sowie starke Signale im PMR-Bereich. Ein D-STAR Relais in Reichweite konnte ich leider nicht ausfindig machen.

Die Repeater App (iOS) zeigt Relais-Stationen für einen festgelegten Radius, Band und Mode, vorausgesetzt, dass diese zuvor in die Datenbank eingetragen wurden

APRS: Der Nachbar Malaysien bietet nicht nur eine deutlich höhere Dichte an Relaisfunkstellen sondern auch die APRS-Frequenz (hier 144,390 MHz) ist extrem stark frequentiert, so dass man trotz guter Lage Schwierigkeiten hat, sich mit der eigenen Bake durchzusetzen. Neben den Digipeatern selbst konnten auch viele Fest-, Mobil oder Portabelstationen sowie Wetterstationen empfangen werden. Einige Stationen schrieben in ihrer Bake JayBee APRS Team, was mich neugierig machte: Nach einer kurzen Internetrecherche stieß ich auf deren Facebook-Gruppe. Die aktive Gruppe um Johor Bahru im Süden von Malaysien und damit angrenzend zu Singapur betreibt einige APRS-Digipeater. In der Gruppe gibt es auch viele Bilder von dem verwendete Equipment und dessen Installation.

Aber was steht eigentlich in meiner eigenen Bake? Ein Blick ins Menü offenbarte, dass ich meinen Bakentext seit dem Umzug nach Singapur noch nicht angepasst hatte. Ich experimentierte mit verschiedenen Einstellungen des Symbols und des Infotextes. Wie die neuen Yaesu Geräte mit analogem APRS, verfügt auch das Kenwood TH-D74 über die Funktion der Aussendung der QSY Information. Das bedeutet, dass der Bakentext die eingestellte Frequenz, Ablage und Ton des nicht für APRS genutzen Bandes mit aussenden kann. Somit wissen Stationen in Reichweite, wo sie mich aktuell in Fonie erreichen könnten. Wie das genau Funkioniert könnt ihr im Handbuch nachlesen, dass ihr hier von unserer Webseite herunterladen könnt.

Meine APRS-Baken unter 9V1LH-7 wurden von 9M4RJB-3 oder 9M4RAP-3 weitergeleitet und dann von 9W2DVZ-1 oder 9W2GCC-1 an aprs.fi weitergeleitet

Fazit und Ausblick: Da ich am eigenen Wohnort keine Aufbaumöglichkeiten für Antennen habe und sich mein Hobbyraum im 1 Stockwerk und umgeben von weiteren Hochhäusern befindet, beschränkt sich meine Aktivität auf die Kommunikation via Hotspots. Der Ausflug hat allerdings nicht nur mein Interesse am Protabelbetrieb wieder geweckt sondern auch, sich mal wieder etwas mehr im Detail mit dem vorhandenen Funkequipment zu beschäftigen. Mit dem TH-D75 hat Kenwood bereits den Nachfolger des TH-D74 angekündigt (siehe Ankündigung). Dieses verspricht einige spannenden Neuerungen wie dualem D-STAR-Empfang, D-STAR Terminal- und Accesspointmodus mit MMDVM kompatibler Schnittstelle und integriertem APRS-Digipeater. Auch eine neue Firmware für das TH-D74 wurde von Kenwood für Ende diesen Jahres angekündigt. Ob diese jedoch auch neue Funktionen mit sich bringt oder nur Fehler behebt bleibt noch abzuwarten.

Hier gibt es noch weitere Impressionen vom Ausflug mit dem Kenwood TH-D74E:

Seid ihr auch Besitzer eines Kenwood TH-D74 oder eines seiner Vorgänger und wenn ja, wie nutzt ihr das Gerät? Lasst es uns gerne in den Kommentaren zu diesem Beitrag wissen.

Möchtest du dein Lieblingsgerät gerne auch hier vorstellen? Dann schreib uns einfach eine E-Mail mit deinem Beitrag an sysop@dl-nordwest.com.

Team DL-Nordwest, Stephan 9V1LH/DG1BGS