KENWOOD TH-D75: User guide

Die Spannung steigt! Für das Kenwood TH-D75 steht nun die Bedienungsanleitung in englischer Sprache zum Download bereit. Doch das ist noch nicht alles. Laut Übersicht sind die Bedienungsanleitung, ein umfangreiches Handbuch und die detaillierten technische Spezifikationen in deutscher Sprache ebenfalls bereits in Vorbereitung und werden wohl bald veröffentlicht.

Wir informieren euch natürlich sobald die Dokumente auch in deutscher Sprache zur Verfügung stehen. Wer bis dahin einen Blick in die englische Bedienungsanleitung werfen möchte kann sie hier herunterladen.

Update 20.10.2023

Kenwood hat die Downloads für den englischsprachigen User guide und die Dokumenten-Übersichtstabelle wieder entfernt. Damit ergibt eine Suche nach TH-D75 nun gar keine Treffer mehr in deren Download Datenbank. Vermutlich hatte Kenwood nicht beabsichtigt, die Dokumente jetzt schon digital zur Verfügung zu stellen. Wer dennoch einen Blick hinein werfen möchte darf sich gerne bei uns melden.

Team DL-Nordwest, Stephan 9V1LH/DG1BGS

Raspberry Pi: DC Buck-Konverter

Raspberry Pi’s erfreuen sich in unseren Funkprojekten großer Beliebtheit. Doch der beliebte Einplatinencomputer (SBC) ist leider etwas wählerisch wenn es im seine Spannungsversorgung geht. In diesem Artikel zeigen wir euch, worauf ihr achten müsst und wie ihr den Raspberry Pi sicher mit eurem vorhandenen 13.8 V Netzteil oder einem 12 V Akkumulator betreiben könnt.

Raspberry Pi’s besitzen einen Micro USB, bzw. der Raspberry Pi 4 einen USB Typ C Anschluss für dessen Spannungsversorgung. Damit sollte sich der Raspberry Pi mit jeder Spannungsquelle betreiben lassen, die eine Gleichspannung von 5 V zur Verfügung stellt und ausreichend Strom liefert. In vielen Fällen sorgt diese Spannungsquelle jedoch zu einer Warnung über eine zu niedrige Spannung (under-voltage, low voltage warning). Zu niedrige Spannung kann dazu führen, dass der Raspberry Pi seine Taktzahl verringert und damit nicht die volle Leistung bringt. Im schlimmsten Fall kann es aber auch zu Abstürzen oder anderen unvorhersehbaren Ausfällen führen.

Aber woran liegt das? Die Kombination aus verwendeter Spannungsquelle und dem Zuleitungskabel kann am Ende dafür sorgen, dass die mindestens notwendigen 5 V Gleichspannung deutlich unterschritten werden. Die Verwendung eines kürzeren Zuleitungskabel kann in den meisten Fällen schon helfen, nicht aber in allen. Offizielle Raspberry Pi Netzteile liefern daher mindestens 5,1 V Gleichspannung, um einem Unterschreiten der Spannung entgegen zu wirken und damit den Raspberry Pi sicher zu betreiben. Aber auch eine ausreichende Stromstärke des Netzteils ist wichtig. Wer Zusatzhardware wie z.B. Displays, USB-Sticks, Aufsteckplatinen oder Sonstiges an seinem Raspberry Pi betreiben möchte ist gut beraten, ein Netzteil zu verwenden, das mindestens 3 A bei 5,1 V Gleichspannung liefern kann. Damit stehen genug Leistungsreserven zur Verfügung.

In vielen Fällen möchten wir für unsere Projekte aber keine zwei Netzteile betreiben, wenn die Funkhardware z.B. bereits aus einem 13,8 VDC Netzteil oder einem Akkumulator gespeist wird. So genannte DC Buck-Konverter (Englisch buck oder step-down converter) können eine höhere Gleichspannung auf eine niedrigere und stabilisierte Gleichspannung umwandeln. Bei der Auswahl ist auch hier darauf zu achten, dass dieser 3 A bei 5,1 VDC liefert.

DC Buck-Konverter im Test, hier an einem Raspberry Pi 4B

Wir haben in der Vergangenheit bereits einige DC Buck-Konverter getestet und können euch den unten dargestellten empfehlen. Auch nach einem mehrstündigem Belastungstest mit einer 100 prozentigen Auslastung aller 4 Kerne eines Raspberry Pi 4 erhielten wir zu keinem Zeitpunkt eine Warnung über zu niedrige Spannung und damit einer Verringerung der CPU-Leistung.

Kleiner DC Buck-Konveter mit 5,1 VDC / 3A

Den hier dargestellten DC Buck-Konverter gibt es in zwei unterschiedlichen Versionen, mit unterschiedlichen Spulen. Achtet beim Kauf darauf, dass ihr die Version mit der hochwertigeren Spule bestellt.

Version mit hochwertigerer vs. schlechterer Spule

Bestellen könnt ihr ihn hier: DC step-down buck converter, 5.1V / 3 A

Hinweis: Der neue Raspberry Pi 5 ist noch Leistungs-hungriger. Um diesen voll ausreizen zu können werden sogar bis zu 5 A benötigt. Solltet ihr also schon jetzt mit dem Gedanken spielen, einen Rasperry Pi 5 mit einem Buck-Konverter versorgen zu wollen, so solltet ihr euch gleich nach einem Modell umsehen, dass die 5 A bereitstellen kann.

Verwendet ihr in euren Projekten auch bereits Buck-Konverter und wenn ja, welche Erfahrungen habt ihr damit gemacht? Lasst es uns gerne in den Kommentaren zu diesem Beitrag wissen.

    Team DL-Nordwest, Stephan 9V1LH/DG1BGS

    WIRES-X PDN: Das richtige Kabel

    Wer sein YAESU C4FM-Funkgerät mit WIRES-X als Portable Digital Node (PDN) betreiben möchte benötigt ein passendes Kabel. Da dieses bei den neueren Geräten nicht mehr zum Lieferumfang gehört, erklären wir euch in diesem Beitrag, welches Kabel ihr für welche Anwendung und euer Gerät benötigt.

    Seit YAESUs Einfürung der WIRES-X PDN ist es nicht mehr zwingend erforderlich, das externe HRI-200 Interface am Funkgerät zu betreiben. Das HRI-200 ist nur noch dann notwendig, wenn ihr im WIRES-X Netzwerk einen eigenen Raum betreiben wollt oder z.B. ein C4FM-Relais an das WIRES-X Netzwerk anbinden möchtet. PDN ermöglicht euch euer PDN-fähiges YAESU Mobil- oder Handfunkgerät mit einem speziellen USB-Kabel direkt mit eurem Windows-PC zu verbinden. Ein weiterer Vorteil bei PDN liegt darin, dass es auch einen Direktmodus gibt, bei dem ihr mit eurem Gerät direkt ins Internet sprechen könnt und damit im Gegensatz zum Accesspoint-Modus kein zweites (C4FM) Funkgerät mehr benötigt. Bei der Auswahl eines geeigneten Kabels sind jedoch einige Kriterien zu beachten:

    • Gerätetyp: Mobilfunk- oder Handfunkgerät
    • Node-Betriebsart: Rein digital oder digital und analog
    • Betriebssystem: Windows Treiber-Kompatibilität

    Ihr benötigt also je nach Gerätetyp einen anderen Kabelsatz. Wenn ihr vorhabt euch auch in analoge WIRES-X Räume zu verbinden, oder in Räume, die sowohl analoge als auch digitale Signale zulassen, benötigt ihr zudem ein Anschlusskabelset, welches neben dem USB-Kabel auch noch entsprechende Audiokabel beinhaltet. Im Fall des Analog + Digital Kabelsatzes für ein Handfunkgerät beinhaltet des Set ebenfalls den benötigten Y-Adapter CT-44.

    Wenn ihr die WIRES-X Software zudem unter dem neuen Betriebssystem Windows 11 betreiben wollt, benötigt ihr zwingend ein USB-Kabel, dessen Treiber mit Windows 11 kompatibel ist. Wir haben euch die folgende Übersichtstabelle erstellt aus der hervorgeht, welches Kabel für euch das richtige ist:

    Die folgenden Bilder zeigen euch Verdrahtungsbeispiele:

    Mobilgerät, digital
    Mobilgerät, analog + digital
    Handfunkgerät, digital
    Handfunkgerät, analog + digital (AP-Modus)

    Die vollständige Anleitung zum Betrieb einer PDN inkl. der Verkabelung, versetzen des Funkgerätes in den PDN-Modus sowie der Installation und Konfiguration der WIRES-X Software haben wir euch hier abgelegt.

    Und hier noch ein Tipp: In Fernost gibt es zu einem günstigen Kurs auch Nachbauten der YAESU-Kabel, die angeben, zu dem YAESU SCU-20 kompatibel zu sein:

    Aber jetzt seid ihr dran …

    Betreibst du WIRES-X als PDN?
    9 votes · 14 answers
    ×

    Teilt uns eure Erfahrung auch gerne in den Kommentaren zu diesem Beitrag mit.

    Team DL-Nordwest, Stephan 9V1LH/DG1BGS

    Raspberry Pi 5 – Der neue Star am SBC Himmel?

    Wie auf der offiziellen Seite raspberrypi.com und in dem dort veröffentlichten Produktvideo zu sehen, soll noch Ende Oktober diesen Jahres der langersehnte Nachfolger des Raspberry Pi 4B erscheinen. Der Raspberry Pi 5 soll über einen 2-3 mal schnelleren Prozessor verfügen und zunächst wahlweise mit 4 GB oder 8 GB daherkommen.

    Weitere Neuerungen:

    • Bluetooth 5.0
    • Power-Taster auf der Hauptplatine
    • Echtzeit Uhr auf Hauptplatine
    • Anschluss für separaten Lüfter
    • Erhöhte Grafikleistung (GPU)
    • Anschluss zweier Cameras oder Displays mit höherer Bandbreite
    • M.2 Anschluss über separate Aufsteckplatine

    Ich persönlich hätte mir WLAN6 und BLE gewünscht, begrüße aber sehr das Vorhandensein der Echtzeit Uhr. Ob und was das Mehr an Leistung in den eigenen Projekten wirklich bringt wird sich zeigen. Ansonsten freut es mich natürlich, dass der Form-Faktor sowie die Belegung der 40-poligen Stiftleiste gleich geblieben sind und sich somit bereits vorhandenes Zubehör weiterverwenden lässt.

    Das offizielle Produktvideo könnt ihr hier ansehen:

    Interessiert euch der Raspberry Pi 5 und welche der neuen Anschlussmöglichkeiten oder Features habt ihr bei seinen Vorgängern bisher vermisst? Lasst es uns gerne in den Kommentaren zu diesem Beitrag wissen.

    Team DL-Nordwest, Stephan 9V1LH/DG1BGS

    Unterwegs mit dem Kenwood TH-D74E

    Als ich 1999 die Amateurfunkprüfung der Einsteigerklasse ablegte war mit dem Kenwood TH-D7E gerade das erste Handfunkgerät mit integriertem TNC erschienen. Da ich schon zu CB-Funk Zeiten intensiver Packet Radio Nutzer war und mich die Vorstellung der portablen Nutzung dieser Betriebsart schon damals sehr reizte, führte für mich quasi kein Weg an diesem Gerät vorbei.

    Treuer Begleiter Kenwood TH-D7E v1 und Zubehör, kurz vor dessen Verkauf

    Rund 17 Jahre später, im Dezember 2016, erwarb ich dann das Kenwood TH-D74E. Mit dessen eingebautem GPS-Receiver sind Betriebsarten wie APRS viel komfortabler geworden. Das Handfunkgerät bietet aber noch jede Menge anderer Features wie D-STAR und einem Breitbandempfänger. Zudem besitzt das Gerät eine Bluetooth-Schnittstelle zum Betrieb mit einem externen Headset, der Programmierung oder Fernbedienung. Die Schnittstelle kann aber auch dazu genutzt werden, AX.25– Datenpakete an eine externe Anwendung weiter zu leiten. Wir werden darauf in einem späteren Beitrag noch etwas genauer eingehen.

    Nun aber zu der eigentlichen Aktivität: An diesem Tag war mein Ausflugsziel der Upper Seletar Reservoir Park in Singapur. Hier gibt es einen begehbaren Turm in Form einer Rakete, Locator OJ11vj, von dem aus man nicht nur eine wunderschöne Aussicht erhält, sondern auch Funktechnisch gute Reichweiten verspricht.

    Da ich bequem im Sitzen funken wollte, positionierte ich zunächst die kleine mitgebrachte Diamond Magnetfußantenne MR-73 SMA-M auf der Reling der Aussichtsplattform. Danach prüfte ich, welche Relaisfunkstellen sich von dem Standort aus erreichen bzw. arbeiten lassen. Das lokale VHF Amateurfunkrelais 9V1RS im Süden von Singapur ließ sich ohne große Probleme auftasten und empfangen. Leider kam auch nach mehrmaligem CQ rufen jedoch kein QSO zustande. Das lokale UHF-Relais 9V1RMP im Osten war schon deutlich schwächer im Empfang, ließ sich dennoch öffnen. Da Singapur Relaistechnisch sonst nichts mehr zu bieten hat nutzte ich die Repeater -App auf meinem iPhone, um gezielt nach Relaisfunkstellen des benachbarten Malaysien zu schauen. Die beiden angezeigten Relais 9M2RGP (147,825 MHz -0,6) und 9M4RGP (145,7375 MHz -0,6) im 2m-Band, die sich wohl beide auf dem Berg Gunung Pulai befinden, konnte ich jeweils stark empfangen. In Singapur ist im 2m-Band jedoch nur Sendebetrieb im Bereich von 144 – 146 MHz erlaubt, wodurch Funkbetrieb zumindest über 9M2RGP von Singapur aus nicht erlaubt ist. Frühere Bestrebungen, den Nachbarn dazu zu bewegen, die angrenzenden Relais in den in Singapur erlaubten Frequenzbereich zu verschieben schlugen bisher leider fehl. Beim Scannen über die Frequenzen konnte ich noch mehr Signale empfangen, z.B. ein DMR-Signal auf 439,0375 MHz, welches ich bisher nicht zuordnen kann, sowie starke Signale im PMR-Bereich. Ein D-STAR Relais in Reichweite konnte ich leider nicht ausfindig machen.

    Die Repeater App (iOS) zeigt Relais-Stationen für einen festgelegten Radius, Band und Mode, vorausgesetzt, dass diese zuvor in die Datenbank eingetragen wurden

    APRS: Der Nachbar Malaysien bietet nicht nur eine deutlich höhere Dichte an Relaisfunkstellen sondern auch die APRS-Frequenz (hier 144,390 MHz) ist extrem stark frequentiert, so dass man trotz guter Lage Schwierigkeiten hat, sich mit der eigenen Bake durchzusetzen. Neben den Digipeatern selbst konnten auch viele Fest-, Mobil oder Portabelstationen sowie Wetterstationen empfangen werden. Einige Stationen schrieben in ihrer Bake JayBee APRS Team, was mich neugierig machte: Nach einer kurzen Internetrecherche stieß ich auf deren Facebook-Gruppe. Die aktive Gruppe um Johor Bahru im Süden von Malaysien und damit angrenzend zu Singapur betreibt einige APRS-Digipeater. In der Gruppe gibt es auch viele Bilder von dem verwendete Equipment und dessen Installation.

    Aber was steht eigentlich in meiner eigenen Bake? Ein Blick ins Menü offenbarte, dass ich meinen Bakentext seit dem Umzug nach Singapur noch nicht angepasst hatte. Ich experimentierte mit verschiedenen Einstellungen des Symbols und des Infotextes. Wie die neuen Yaesu Geräte mit analogem APRS, verfügt auch das Kenwood TH-D74 über die Funktion der Aussendung der QSY Information. Das bedeutet, dass der Bakentext die eingestellte Frequenz, Ablage und Ton des nicht für APRS genutzen Bandes mit aussenden kann. Somit wissen Stationen in Reichweite, wo sie mich aktuell in Fonie erreichen könnten. Wie das genau Funkioniert könnt ihr im Handbuch nachlesen, dass ihr hier von unserer Webseite herunterladen könnt.

    Meine APRS-Baken unter 9V1LH-7 wurden von 9M4RJB-3 oder 9M4RAP-3 weitergeleitet und dann von 9W2DVZ-1 oder 9W2GCC-1 an aprs.fi weitergeleitet

    Fazit und Ausblick: Da ich am eigenen Wohnort keine Aufbaumöglichkeiten für Antennen habe und sich mein Hobbyraum im 1 Stockwerk und umgeben von weiteren Hochhäusern befindet, beschränkt sich meine Aktivität auf die Kommunikation via Hotspots. Der Ausflug hat allerdings nicht nur mein Interesse am Protabelbetrieb wieder geweckt sondern auch, sich mal wieder etwas mehr im Detail mit dem vorhandenen Funkequipment zu beschäftigen. Mit dem TH-D75 hat Kenwood bereits den Nachfolger des TH-D74 angekündigt (siehe Ankündigung). Dieses verspricht einige spannenden Neuerungen wie dualem D-STAR-Empfang, D-STAR Terminal- und Accesspointmodus mit MMDVM kompatibler Schnittstelle und integriertem APRS-Digipeater. Auch eine neue Firmware für das TH-D74 wurde von Kenwood für Ende diesen Jahres angekündigt. Ob diese jedoch auch neue Funktionen mit sich bringt oder nur Fehler behebt bleibt noch abzuwarten.

    Hier gibt es noch weitere Impressionen vom Ausflug mit dem Kenwood TH-D74E:

    Seid ihr auch Besitzer eines Kenwood TH-D74 oder eines seiner Vorgänger und wenn ja, wie nutzt ihr das Gerät? Lasst es uns gerne in den Kommentaren zu diesem Beitrag wissen.

    Möchtest du dein Lieblingsgerät gerne auch hier vorstellen? Dann schreib uns einfach eine E-Mail mit deinem Beitrag an sysop@dl-nordwest.com.

    Team DL-Nordwest, Stephan 9V1LH/DG1BGS

    Himbeere oder lieber Orange?

    Der Einplatinencomputer Orange Pi Zero LTS (OPi0) stellt sich vor

    In zahlreichen Amateurfunkprojekten kommen heute s.g. Einplatinencomputer, zu Englisch Single-Board Computer oder kurz SBC, zum Einsatz. Als wichtigster Vertreter ist hier der, mittlerweile in der 4. Generation vorliegende, Raspberry Pi der Raspberry Pi Foundation zu nennen. Dessen erste Generation erblickte bereits 2014 das Licht der Welt. Sein Betriebssystem Raspberry Pi OS, bzw. früher Raspbian, basiert auf der Linux Distribution Debian und wurde speziell für die Verwendung des im Raspberry Pi verwendeten ARM-Prozessors optimiert. Es existieren aber auch andere Betriebssysteme für den Raspberry Pi. Seinen Erfolg verdankt der Raspberry Pi u.a. der weltweiten Verfügbarkeit, seinem geringen Preis von hierzulande damals nur um die 35 Euro und des Angebotes an unzähligen und aufsteckbaren Hardware-Erweiterungen. In der noch bis vor kurzem anhaltenden Chipkriese war der Raspberry Pi jedoch entweder nur schwer und wenn dann zu horrenden Preisen zu bekommen.

    Es soll an dieser Stelle auch nicht unerwähnt bleiben, dass es lange vor dem Raspberry Pi schon andere SBC gab, wie z.B. den SheevaPlug. Dieser fand ebenfalls in diversen Amateurfunk-Projekten seinen Einsatz, z.B. als APRS iGate.

    Wie ein Steckernetzteil steckt der SBC SheevaPlug direkt in der Steckdose, hier konfiguriert als APRS4r-Gateway

    Aber muss es für jedes Projekt wirklich immer ein Raspberry Pi sein? Wir meinen Nein! Nach dem weltweiten Erfolg des Raspberry Pi kamen viele weitere SBC auf den Markt, u.a. das BeagleBoard, Cubieboard, PandaBoard, der Lattepanda, Banana Pi, Orange Pi und viele mehr. Diese unterscheiden sich hauptsächlich in den verwendeten Prozessoren, ihrer Leistungsfähigkeit, den zur Verfügung stehenden Schnittstellen und dem Preis. Möchte man jetzt zum Beispiel seinen Kurzwellen-Transceiver für Digi-Modes erweitern so wäre es wünschenswert, nicht nur die Software direkt auf dem SBC laufen zu lassen, sondern auch gleich dessen Soundkarte und mit ein wenig Zusatzbeschaltung auch dessen serielle Schnittstelle für die CAT-Steuerung nutzen zu können. Ähnliches gilt, möchte man sich z.B. einen analogen Hotspot für Sprechfunk- oder APRS-Betrieb bauen, nur das hier oft noch weniger Prozessorressourcen benötigt werden. Viele SBC wie auch der Raspberry Pi verfügen nicht über den benötigten Mikrofon-Eingang, so dass man entweder zusätzlich noch eine externe USB-Soundkarte anschließen muss oder aber eine Aufsteckplatine verwenden muss, die eine Soundkarte über den zur Verfügung stehenden I²S-Bus anbindet.

    Der Orange Pi Zero (LTS) hingegen bietet nicht nur einen Mikrofon-Eingang sondern bei Bedarf auch die Stromversorgung für ein Kondensatormikrofon. Stereo Line-Ausgänge sowie zwei weitere USB2.0-Ports, drei serielle Schnittstellen sowie ein I²C und SPI-Bus stehen ebenfalls über Steckerleisten zur Verfügung.

    Pinbelegung der Steckerleisten des Orange Pi Zero (LTS), Quelle: oshlab.com

    Die Standard-Version des Orange Pi Zero (LTS) besitzt lediglich 256 MB Ram, eine Version mit 512 MB Ram ist aber ebenfalls erhältlich (beim Kauf unbedingt auf die richtige Version achten). Als Betriebssystem kann man auf der offiziellen Webseite zwischen Ubuntu, Debian oder Android wählen. Ich selbst bevorzuge Armbian, welches besonders schlank und damit für die Verwendung auf dem OPi0 bestens geeignet ist.

    Orange Pi Zero LTS, Quelle: www.orangepi.org

    Fazit: Der Orange Pi Zero (LTS) kann eine interessante Alternative zum oft verwenden Raspberry Pi darstellen, besonders wenn ein Projekt keine all-zu-großen Anforderungen an die CPU-Leistung stellt, aber dafür ein Mikrofon-Eingang benötigt wird. Der OPi0 ist zudem deutlich kleiner und etwas günstiger als andere SBC-Vertreter.

    Bezugsquellen:

    Wir werden euch hier in naher Zukunft einige Projekte vorstellen, die wir bereits mit einem Orange Pi Zero (LTS) realisiert haben. Solltet ihr diesen bereits auch schon im Einsatz haben oder ihr weitere Fragen oder Anmerkungen dazu haben, dann lasst es uns gerne in den Kommentaren zu diesem Beitrag wissen.

    Team DL-Nordwest, Stephan 9V1LH/DG1BGS

    Schon wieder ein neuer Bot? XLX421 Monitor

    Vor Kurzem hatten wir euch HIER bereits den DLNW-Monitor Telegram Bot vorgestellt, der euch kein QSO im Raum DL-Nordwest mehr verpassen lässt. Bei einigen Nutzern kam jedoch der Wunsch auf, auch über Aktivitäten in anderen Modulen des angeschlossenen XLX421 informiert zu werden. Dieses ist besonders dann sinnvoll, wenn nur ein Funkgerät für die digitale Sprachübertragung via Relais oder Hotspot zur Verfügung steht.

    Beispielmeldung des XLX421-Monitor Telegram-Bots

    Hier ist er nun: Der XLX421 Monitor Bot. Er verfügt aktuell über die folgenden Funktionen:

    • Ausgabe der beobachteten XLX421 Modulbuchstaben und deren Beschreibung einmal täglich
    • Anzeige des Rufzeichens und des Names der rufenden Station, inkl. Link zu dessen qrz.com Seite sowie Einstieg und Modul, auf dem gerufen wurde
    • Die Meldung erfolgt pro Rufzeichen, Via und Modul Kombination nur maximal einmal pro halbe Stunde
    • Aussendungen < 2 Sekunden werden ignoriert
    Liste der XLX421-Module, die aktuell beobachtet werden

    Um den Bot zu abonnieren und damit keinen OM mehr zu verpassen gebt bitte bei Telegram folgenden Link ein https://t.me/+bOIK0139pWdmMjU6 oder scannt bzw. klickt einfach auf den folgenden QR-Code:

    Wie immer sind wir auf eure Anregungen und euer Feedback gespannt. Gerne auch in den Kommentaren direkt unter diesem Beitrag.

    Euer Team DL-Nordwest

    Für das Brandmeister-Backend-Upgrade müssen Ihre API-Schlüssel neu generiert werden

    Wenn Sie die API-Schlüssel von Brandmeister für Ihre Anwendungen verwenden, lesen Sie diesen Artikel bitte sorgfältig durch.

    Am Wochenende führten die Brandmeister-Administratoren ein umfangreiches Upgrade der Backend-Server und Datenbanken durch. Dieses Upgrade beinhaltete eine Erhöhung der Sicherheit der Plattform. Infolgedessen wurden die vorhandenen API-Schlüssel ungültig und müssen neu generiert werden.

    Wenn Sie derzeit API-Schlüssel in Ihrer Brandmeister-Konfiguration verwenden (für Pi-Star, openSPOT, benutzerdefinierte Programmierung usw.), wird möglicherweise die Fehlermeldung „401 – Nicht autorisiert“ angezeigt. Um dieses Problem zu beheben, befolgen Sie bitte die Anweisungen in diesem Artikel https://news.brandmeister.network/introducing-user-api-keys/ , um neue API-Schlüssel für Ihre Anwendung zu generieren. Wir entschuldigen uns für etwaige Unannehmlichkeiten.

    Die besten 73 vom Brandmeister Admin-Team

    Dieser Text stammt von der Brandmeister Homepage und dient nur eurer Information. Fragen hierzu bitte direkt an das Brandmeister Team.

    Und (fast) täglich grüßt das Murmeltier… ICOM ID-52 v1.25

    Nur eine Woche ist vergangen, seit dem ICOM die Firmware Version 1.24 veröffentlicht hat. Nun gibt es bereits dessen Nachfolger, die Version 1.25.

    Hierbei handelt es sich wohl nur um eine Fehlerbehebung, die das automatisierte Senden von D-PRS Positionspaketen (APRS Digital) betrifft.

    Die neue Firmware kann hier heruntergeladen werden: https://www.icomjapan.com/support/firmware_driver/3903/

    Team DL-Nordwest, Stephan 9V1LH/DG1BGS

    ICOM ID-52: Firmware Update v1.24

    Für das ICOM Handfunkgerät ID-52 steht jetzt die Firmware v1.24 vom 28.07.2023 zur Verfügung. Welche Firmware Version ihr aktuell installiert habt könnt ihr einfach im Menü nachsehen: MENU -> SET -> OTHERS -> INFORMATION -> VERSION

    Die Verbesserungen betreffen wohl vor allem das Bluetooth-Modul, vorausgesetzt euer ID-52 besitzt das neuere Bluetooth-Modul (erkennbar an der v2.01). Sollte bei euch v1.12 angezeigt werden so habt ihr das ältere Bluetooth-Modul.

    Weitere Neuerungen betreffen den Bild Transfer: Dieser soll in Kombination mit der Smartphone-App ST-4001I (iOS) und ST-4001A (Android) jetzt deutlich schneller von statten gehen. Auch der Bild Empfang via Bluetooth soll optimiert worden sein. Wer den Bilder Transfer selbst mal ausprobieren möchte kann dieses in dem dafür vorgesehenen XLX421 Modul E praktizieren.

    Die Firmware kann bequem via SD-Karte in das Funkgerät übertragen werden.

    Heruntergeladen werden kann das Update hier: https://www.icomjapan.com/support/firmware_driver/3874/

    Team DL-Nordwest, Stephan 9V1LH/DG1BGS